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Abstract
Embedded Domain Specific Languages are a powerful tool
for developing customized languages to fit specific problem
domains. Shallow EDSLs allow a programmer to program
using many of the features of a host language and its syntax,
but sacrifice performance. Deep EDSLs provide better per-
formance and flexibility, through the ability to manipulate
the abstract syntax tree of the DSL program, but sacrifice
syntactical similarity to the host language. Using Haskino,
an EDSL designed for small embedded systems based on
the Arduino line of microcontrollers, and a compiler plu-
gin for the Haskell GHC compiler, we show a method for
combining the best aspects of shallow and deep EDSLs. The
programmer is able to write in the shallow EDSL, and have it
automatically transformed into the deep EDSL. This allows
the EDSL user to benefit from powerful aspects of the host
language, Haskell, while meeting the demanding resource
constraints of the small embedded processing environment.

CCS Concepts • Software and its engineering → Do-
main specific languages; Translator writing systems and
compiler generators; Source code generation;
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1 Introduction
Small, resource constrained embedded systems provide a
challenge to programming with high level functional lan-
guages. Their small RAM and permanent storage resources
make it impossible to run languages like Haskell directly on
them. An alternative to using a high level language directly
on such systems, is to use an Embedded Domain Specific
Language (EDSL). Using an EDSL allows the user to write
code using a subset of the look, feel, and semantics of the
host language.

Embedded domain specific languages come in two flavors,
shallowly embedded and deeply embedded. Shallowly em-
bedded DSLs compute values directly, while deeply embed-
ded DSLs build an abstract syntax tree of computations. With
shallow EDSLs, values are computed directly, and chaining
together computations requires the involvement of the host
language. The syntax and semantics of a shallow EDSL are
much closer to the syntax and semantics of a host language.
The result of a computation in a deep EDSL is a structure,
which may be used to cross-compile the computation before
being evaluated. This ability does come at a cost, as deep
EDSL’s often require special syntactic notations for language
features such as control structures.

Table 1. EDSL Options

Native Execution/
Interpretation

Code Generation/
Compilation

Shallow
EDSL

hArduino
Blank Canvas
Haxl

• Ease of development
• Quick turnaround

?????

Deep
EDSL

• Debugging

Kansas Lava
Feldspar
Ivory

• Performance
• Resource Optimization

Table 1 illustrates a subset of the EDSLs hosted by Haskell,
our host language. The vertical axes is divided into shal-
lowly and deeply embedded EDSL’s. The horizontal axis
describes the method of executing the computation on the
target system. EDSL’s in the first column either execute
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the computation natively in the host language, or package
the computation for execution in another form, such as a
bytecode, for interpretation either locally or remotely. The
systems in the second column use the host representation of
the computation to generate code in another language, and
compile that language for execution on the target system.
One way of packaging the computation for remote inter-
pretation, as is done by systems in the first column, and
which is used in much of our research, is to use the Remote
Monad [15] design pattern. This design pattern allows for
bundling of computations to be sent to a remote target.
Shown in the upper left quadrant of the table are EDSLs

which share the attributes of being shallowly embedded
DSL’s, implemented using the Remote Monad design pattern.
hArduino [9] is an EDSL used to program small embedded
systems based on the Arduino series of boards. It is shallowly
embedded, and may only be used while tethered to a host
with a USB cable. It is the predecessor to our Haskino system.
Blank Canvas [14] is a shallowly embedded EDSL which
allows users to program interactive images in a web browser
using the HTML5 Canvas API in Haskell. Haxl [23] is a
Haskell library and EDSL for efficient access of remote data
sources, and is also shallowly embedded. These EDSLs share
the characteristic of ease of development, since given their
shallow embedding, their syntax is close to idiomatic Haskell.
They also allow quick turnaround, as intermediate results of
computations can be observed on the host, allowing ease of
debugging.
The lower right quadrant of the table lists examples of

EDSL’s which are deeply embedded and include code gen-
eration. Kansas Lava [12] is an EDSL for hardware entities,
and is able to generate VHDL. Felsdspar [1][2] is an EDSL
for describing digital signal processing algorithms, and is
able to generate C language code from the EDSL. Ivory [8] is
an EDSL that is designed as a language for safe systems level
programming, and also generates C language code. All of
these EDSL’s have the characteristics of better performance
and better resource utilization than shallow EDSL’s, due to
the ability to generate code in a low level language.
The lower left quadrant in the table is the worst of both

worlds. With EDSLs in this quadrant, the user must write in
a harder to use deep language, and live with lower perfor-
mance and suboptimal resource utilization, since code is not
generated in a lower level language. One use we have found
for languages in this quadrant is debugging the development
of a Deep EDSL prior to code generation.

The upper right quadrant is where systems that combine
ease of use and optimized performance may be found. ED-
SLs in this quadrant are able to be written in the easier to
use shallow embedding, and have the better performance
and resource utilization characteristics of code generation.
Also, if the same shallow code can be used with native exe-
cution/interpretation, as well as code generation, the user
can first prototype with native execution or interpretation,

and then deploy with code generation. It is a solution that
enables programming in this quadrant that we explore in
this paper. Conal Elliott’s work in compiling to categories [7]
is another method for developing a programing system that
exhibits attributes of this quadrant, combining ease of use
with analysis and optimization.

In this paper, we make the following contributions:

• Weprovide amethod of transforming a shallowmonadic
EDSL to a deepmonadic EDSL using aworker-wrapper
transformation and a set of transformation rules (Sec-
tions 4 and 5).
• We also provide a method for transforming tail re-
cursive functions in the same monadic EDSL into an
iterative structure once again using transformation
rules (Section 6).
• To automate the transformations listed above, we have
developed a GHC compiler plugin. This plugin allows
the user to write shallow, tail recursive EDSL code, and
have it transformed into deep, iterative EDSL code as
part of the compilation process (Section 7).

2 Haskino
Figure 1 illustrates the system we have developed to advance
the use of functional languages on the Arduino, known as
Haskino [16]. The figure shows the capabilities that have
been developed in each of three steps of research.

In step 1, we developed a shallow EDSL, as well as a deep
EDSL, both written in Haskell [17]. They allow the end user
to write a program on the host, while the computations
specified by the program are executed on the Arduino using
a firmware interpreter. The shallow EDSL allows the user to
interactively program the Arduino, with intermediate results
being returned to the host computer connected by USB cable.
This interactive setup makes debugging and prototyping
of new code and hardware much easier. The deep EDSL
provides a way of outsourcing entire groups of commands
and control-flow idioms to the Arduino. This allows a user’s
Haskell program to store a bytecode program on the board,
then step back and let it run. Both of these EDSL methods
use the remote monad design pattern to provide the key
capabilities.

For step 2 of the research, Haskino was modified to use the
same monadic code that is executed with the interpreter, but
instead compile it into C code [18]. That C code may then
be compiled and linked with a small runtime, to allow stan-
dalone operation of an executable with a smaller size than
the interpreted code. This smaller size allows more complex
programs to be developed and executed within the limited
resources of the Arduino. In addition, the second stage of
Haskino research added the concept of multi-threaded opera-
tion to the system. Programming embedded microcontrollers
often requires the scheduling of independent threads of exe-
cution, specifying the interaction and sequencing of actions
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Figure 1. Haskino Overview

in the multiple threads. We add thread scheduling and inter-
thread communication concepts to the EDSLs. In addition,
we added scheduling and communication capabilities en-
abling those concepts to both the firmware interpreter and
the small run time.

In step 3 of the research, detailed in this paper, we explore
enabling the user to write programs once in the shallow
EDSL, and then have the code automatically translated to
the deep EDSL by the Haskino system. The syntax of the
shallow EDSL is much closer to standard Haskell than the
syntax of the deep EDSL, using Haskell operators and con-
trol flow mechanisms. In addition, we would like for the
user to be able to use the recursive style of iteration that
is normally used in functional programming, as opposed to
imperative programming’s traditional for and while struc-
tures. We would like the program translation to be able to
translate tail recursive functions written in the shallow DSL
into the iterateE structure used in the deep EDSL. To en-
able these translations, we have developed a plugin for the
GHC compiler which is able to perform the translations us-
ing principled methods.With the translation system, the user
is able to write the code once and use it with both the inter-
preted, interactive system as well as the compiled, efficient
system.

3 Worker-Wrapper Transformations
The worker/wrapper transformation [13, 20] is a transfor-
mation that converts a computation of one type into a com-
putation of another type (worker), wrapped by a function
that converts between the types of the two computations
(wrapper). These type of transformations are correctness
preserving, and have been used in compilers and other ap-
plications for many years.

Assuming a function f, which has a the following form:
f = body

The right hand side, body, may have recursive calls to f. We
can then replace the body with the wrapper function, wrap
applied to the worker function, work. The worker function
itself is an application of the un-wrapper function, unwrap
to the body of the original function.

f = wrap work
work = unwrap body

Where the body function is of type B, and the work func-
tion is of type A, the types of the worker/wrapper transfor-
mation are illustrated in Figure 2.

Applying this principle to our desired translations of shal-
low to deep EDSLs, and using the terminology of data rep-
resentation [19], we define the rep function which is the
un-wrapper which moves from our normal Haskell types to
the Expr representation, and abs which converts from the
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A B

unwrap

wrap

Figure 2.Worker-Wrapper Transformation

representation back to the abstract type. This is illustrated
in Figure 3.

a Expr a

rep

abs

Figure 3. Expression Transformation

These conversions between the abstract type a and the
concrete type Expr a depend on the worker-wrapper as-
sumption that:

wrap ◦ unwrap = idA

Stating this in our DSL terms:

abs ◦ rep = idA

In the context of our expression language, that means that
if we take a literal value in a base Haskell type such asWord8,
move it the expression language with the rep function, then
evaluate the resulting expression with the abs function, we
will get the original value back.

4 Shallow to Deep Transformation
Our shallow to deep transformation of a programwritten in a
monadic EDSL uses a worker-wrapper based transformation
to move from a shallowly to a deeply embedded language.
We start with a basic example in the shallowly embedded
Haskino language to demonstrate how our transformations
work. The following simple Haskino program reads the value
of two digital inputs, which represent the state of two but-
tons, and then outputs a value to a digital output. The output
will light a LED if either button one or button two is pressed.
The program runs in an infinite loop (we will later show in
Section 6 how this can be written in a recursive style and
transformed into the loop primitive), with a 1 second delay
between each loop.

let button1 = 2
let button2 = 3
let led = 13
loop $ do

a <- digitalRead button1
b <- digitalRead button2
digitalWrite led (a || b)
delayMillis 1000

The primitives used in the example are shallow commands
and procedures in the Haskino Remote Monad [15] based
DSL. They have the following types:

loop :: Arduino () -> Arduino ()
digitalRead :: Word8 -> Arduino Bool
digitalWrite :: Word8 -> Bool -> Arduino ()
delayMillis :: Word8 -> Arduino ()

With the shallow version of Haskino, the results of each
of the computations (in this example, the value of the but-
ton state in digitalRead) are returned to the host com-
puter and used in computations which will be sent as pa-
rameters of future commands (the value of the LED state in
digitialWrite in this example).

The Haskino language also has a deeply embedded form,
where parameters to the commands and procedures are not
native Haskell types, but instead are values in an expression
type, Expr. The type class ExprB is used to specify Haskell
base types whichmay be lifted into the Expr type. The deeply
embedded version of the language allows all of the compu-
tations to take place remotely on the Arduino, either as a
stored program running in the Haskino interpreter, or trans-
lated to C, and compiled to assembly language to run directly
on the Arduino.
The deep versions of the Arduino primitives used in our

example have the following types:
loopE :: Arduino () -> Arduino ()
digitalReadE :: Expr Word8 -> Arduino (Expr Bool)
digitalWriteE :: Expr Word8 -> Expr Bool ->

Arduino ()
delayMillisE :: Expr Word8 -> Arduino ()

Using these deep primitives, we could write a deeply em-
bedded version of our shallowly embedded example, which
would have the following form:

let button1 = 2
let button2 = 3
let led = 13
loopE $ do

a <- digitalReadE (lit button1)
b <- digitalReadE (lit button2)
digitalWriteE (lit led) (a ||* b)
delayMillisE (lit 1000)

The lit operations lift a basic Haskell type into the Expr
expression type, and the ||* operator is the logical or oper-
ation between two values of the Expr Bool type.

Writing even this simple example in the deeply embedded
style presents challenges to the programmer, as opposed
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to the shallowly embedded style, which is more idiomatic
Haskell. The overhead to writing in the deeply embedded
style becomes even greater when using conditionals and
iteration. We would prefer that the programmer be able to
write in the shallowly embedded style, and let the compiler
transform it to the deeply embedded style automatically. For
now, we will show how this simple example may be written
in the shallow version, and automatically converted to the
deep version. We will deal with conditionals and iteration
later in Section 5 and Section 6.

In the following steps in the transformation, we will omit
the initial let expressions, and concentrate on the loop body.
First, we will de-sugar the do notation, and get the following
form:

loop (
digitalRead button1 >>=

(\ a -> digitalRead button2 >>=
(\ b -> digitalWrite led (a || b))) >>
delayMillis 1000)

In the first step of the transformation, we will convert each
of the shallow commands and procedures into their deep
versions, inserting worker-wrapper abs and rep function
calls (as we described in Section 3) to maintain the types of
the overall computation. The rep function moves a value
from the basic Haskell type to one of the Expr type, and the
abs function has the opposite effect, moving a value from a
Expr type to a basic Haskell type. The rep is equivalent to
the lit function of the ExprB type class, and may remain in
the transformed code, while the abs function should never
actually be evaluated in the transformed code.

rep :: ExprB a => a -> Expr a
rep w = lit w

abs :: Expr a -> a
abs _ = error "Internal error: abs called"

In the following descriptions of transformations, we will
describe the transformations in the style of GHC rewrite
rules [21]. In some cases the rules given would not be valid
for GHC, as the left hand side is not a function application,
however the syntax of the rules provides a convenient rep-
resentation notation for our transformations.
The first transformation is of procedures, which return

values. Each use of a shallow procedure proc will be trans-
formed to use a deep version, procE. These shallow and deep
versions have the forms:

proc :: a1 -> ... -> an -> Arduino b
procE :: Expr a1 -> ... -> Expr an ->

Arduino (Expr b)

The term proc represents a generic shallow procedure,
and procE represents a generic deep procedure. A specific
transformation will be needed for each of the actual pro-
cedures in the DSL, but we use this generic procedure to
show the form of the transformation. This transformation is
achieved using the following rule.

forall (arg1 :: a1) ... (argn :: an).
proc arg1 .. argn

=
abs <$> (procE (rep arg1) ... (rep argn))

Transformations for commands are simpler, because they
return unit, they do not require the fmap application of the
abs operator. Applying this transformation step to our ex-
ample program, we get the following:

loopE (
abs <$> digitalReadE (rep button1) >>=

(\ a -> abs <$> digitalReadE (rep button2) >>=
(\ b -> digitalWriteE (rep led)

(rep (a || b)))) >>
delayMillisE (rep 1000))

Now that we have the worker-wrapper operators placed
in our code, the next step in the transformation involves
moving the rep operators inside of expressions, transforming
the shallow functions over standard Haskell types into deep
functions over types in the Expr data type. We refer to these
transformations as “rep push” operations, pushing the rep
operators to the interior of expressions. The instance of this
type of transformation used in our simple example is for the
boolean or operator, and the rule for the transformation is:

forall (b1 :: Bool) (b2 :: Bool).
rep (b1 || b2)

=
(rep b1) ||* (rep b2)

After applying the rep push transformation rule to the
example, the expression is transformed from a Bool type
into a Expr Bool type as shown below.

loopE (
abs <$> digitalReadE (rep button1) >>=

(\ a -> abs <$> digitalReadE (rep button2) >>=
(\ b -> digitalWriteE (rep led)

((rep a) ||* (rep b)))) >>
delayMillisE (rep 1000))

Now that we have moved the rep functions inside of ex-
pressions, we can apply the next rule of the transformation,
starting to move the abs operators closer to the rep operators
to achieve fusion. This rule is a variant of the third monad
rule, and has the form:

forall (f:: Arduino (Expr a)) (k:: a -> Arduino b).
(abs <$> f) >>= k

=
f >>= k . abs

Applying this monadic rule to the example, we move the
abs operators through the two monadic binds, changing
them to a composition of the continuation with the abs.
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loopE (
digitalReadE (rep button1) >>=

(\ a -> digitalReadE (rep button2) >>=
(\ b -> digitalWriteE (rep led)

((rep a) ||* (rep b))) . abs
) . abs >>

delayMillisE (rep 1000))

Having moved the abs operators through the binds, with
the next rule we would like to move the abs operators in-
side of the lambdas. The transformation to do this has the
following form:

forall (f :: Arduino a).
(\ x -> f[x]) . abs
=

(\ x' -> let x=abs x' in f[x])

The notation f[x] represents the usage of the binding x
somewhere inside the function f. When this rule is applied to
the example, two let expressions are inserted into the lambda
expressions, as show below:

loopE (
digitalReadE (rep button1) >>=

(\ a' -> let a = abs a' in
digitalReadE (rep button2) >>=
(\ b' -> let b = abs b' in

digitalWriteE (rep led)
((rep a) ||* (rep b)))) >>

delayMillisE (rep 1000))

The let expressions may then be eliminated by replacing
instances of a and b in the body of the lambdaswith (abs a')
and (abs b') respectively. This will result in:

loopE (
digitalReadE (rep button1) >>=

(\ a' -> digitalReadE (rep button2) >>=
(\ b' -> digitalWriteE (rep led)

((rep (abs a')) ||*
(rep (abs b'))))) >>

delayMillisE (rep 1000))

Now, with the rep and abs applications correctly posi-
tioned, one final simple transformation is required. The rep-
abs combinations may be fused by the following rule.

forall x.
rep(abs(x))
=

x

At this point the transformed code is equivalent to the
hand written deeply embedded code, since rep is equivalent
to lit, and we have achieved our goal with the transforma-
tion.

loopE (
digitalReadE (rep button1) >>=

(\ a' -> digitalReadE (rep button2) >>=
(\ b' -> digitalWriteE (rep led)

( a' ||* b'))) >>
delayMillisE (rep 1000))

The transformations described in the example in this sec-
tion, and which are implemented in our plugin (Section 7 ),
currently cover monadic code written with the higher level
Haskell functions >>= and >>. They do not handle other
higher level Haskell monadic functions such as mapM. The
worker-wrapper transformation techniques used in this sec-
tion could be extended to define rules for transforming in-
stances of mapM and other higher order functions.

5 Conditionals
Conditionals in deeply embedded DSLs normally take the
form of functions over three arguments, one for the boolean
test, and one each for the then and else branch of the condi-
tional. Writing the conditionals in this form, as opposed to
the normal Haskell if-then-else form, is another case where
writing code for a deeply embedded DSL is inconvenient.
Our transformations once again allow the program author
to write in a shallowly embedded DSL form, like standard
Haskell coding, and have the program automatically trans-
formed to the deep EDSL form.

There are two types of conditionals which must be trans-
formed. The first of these are conditionals where the then
and else expressions are of the main data type of the EDSL.
Once again, using our example of the Haskino language,
these are terms of the Arduino monad type. In the Haskino
language, this type of conditional function has the following
type:

ifThenElseE :: ExprB a => Expr Bool ->
Arduino (Expr a) ->
Arduino (Expr a) ->
Arduino (Expr a)

We will use another small example code section which
deals with three button inputs and two LED outputs to
demonstrate the conditional transformation:

a <- digitalRead button1
b <- if a

then do
digitalWrite led1 True
digitalRead button2

else do
digitalWrite led2 True
digitalRead button3

The main transformation of the conditional is similar to
the command and procedure transformations we performed
in Section 4. The rule syntax for the transformation is as
follows:

forall (b :: Bool) (m1 :: ExprB a => Arduino a)
(m2 :: ExprB a => Arduino a).

if b then m1 else m2
=

abs <$> ifThenElseE (rep b) (rep <$> m1)
(rep <$> m2)

Applying this rule to our example, after also applying the
command and procedure transformations from Section 4, the
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shallow code containing the conditional is transformed into
the following:

a <- digitalRead button1
b <- abs <$> ifThenElseE (rep a)

(rep <$> do
digitalWrite (rep led1) (rep True)
digitalRead button2)

(rep <$> do
digitalWrite (rep led2) (rep True)
digitalRead button3)

At this point, two more manipulation rules need to be
added to the transformation toolbox. The first is a rule which
will push the fmap application of rep through the monadic
binds in the then and else branches. It has the following
form:

forall (f :: Arduino a) (k :: a -> Arduino b).
rep <$> (f >>= k)

=
f >>= \ x -> rep <$> k x.

After the application of this rule, along with the rules de-
scribed in Section 4, our conditionals example is transformed
to the following:

a' <- digitalReadE button1
b' <- ifThenElseE (a')

(do
digitalWriteE (rep led1) (rep True)
rep <$> (abs <$> digitalReadE

(rep button2)))
(do

digitalWriteE (rep led2) (rep True)
rep <$> (abs <$> digitalReadE

(rep button3)))

Now the final rule required is the fmap analog to the rep-
abs fusion rule we used earlier in Section 4, which will fuse
the rep and abs functions in the then and else branches.

forall (m :: Expr a => Arduino a).
rep <$> (abs <$> m)
=

m

The other form of conditional found in many deeply em-
bedded DSLs is a conditional over the expression language.
In the Haskino language, this conditional has the following
type:

ifB :: ExprB a => Expr Bool ->
Expr a -> Expr a -> Expr a

Transformation of an if-then-else expression written in
a shallowly embedded form to this deeply embedded condi-
tional requires only one transformation rule, as shown below.
Following this application rule, the rep-push rules described
in Section 4 may be used to further reduce the expressions
in the boolean test, as well as the then and else branches of
the expression.

forall (b :: Bool) (t :: ExprB a => a)
(e :: ExprB a => a).

if b then t else e
=

abs $ ifB (rep b) (rep t) (rep e)

6 Iteration and Recursion
An Arduino C programmer would use for or while loops
for programming iteration, however, a Haskell programmer
would use recursion for the same task. The Haskino deep
EDSL provides a iterateE structure for interation, but as
our goal is to provide relatively idiomatic Haskell syntax to
the programmer, using it is unsatisfying. Instead, we would
like to be able to translate tail recursive functions in the
shallow EDSL into functions using the iterateE structure
automatically, as we have done with conditionals and the
other shallow components of the DSL.

6.1 First Recursion Example
Starting with a typical iteration example on the Arduino, we
will blink an LED a specified number of times in Haskino.

led = 13
button1 = 2
button2 = 3

blink :: Word8 -> Arduino ()
blink 0 = return ()
blink t = do

digitalWrite led True
delayMillis 1000
digitalWrite led False
delayMillis 1000
blink $ t-1

Wewould like to transform recursive functions of the type
Expr a -> Arduino(Expr b) into functions which use an
imperative iteration loop. We enable the transformation by
creating a data type, Iter which indicates if on a specific
iteration of the loop, the function should return (it is "Done"),
or if it should perform the computation associated with the
next iteration of the loop (it needs to "Step").

data Iter a b
= Step a
| Done b

We also define a Haskell function which performs the
iterative loop. This function will not be used in the final
implementation, but is defined to allow us to demonstrate
the transformation method in the shallow version of the DSL.
The iteration function, iterLoop, takes the initial value of
the input argument, and a function which is able to perform
a single step of the iteration that returns either a Step value
of the input type, or a Done value of the output type.
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iterLoop :: a -> (a -> Arduino (Iter a b)) ->
Arduino b

iterLoop iv stepF = do
result <- stepF iv
case result of

Step va -> iterloop va stepF
Done vb -> return vb

We start the transformation by adding a wrapper function
to insert our iterLoop function. The worker function, blink
is formed by applying the Done constructor to the body of
the original function, in which we have removed the pattern
matching notation, replacing it with conditional notation.

blink :: Word8 -> Arduino ()
blink a = iterLoop blinkI a

blinkI :: Word8 -> Arduino (Iter Word8 ())
blinkI t = Done <$>

if (t == 0)
then return ()
else do

digitalWrite led True
delayMillis 1000
digitalWrite led False
delayMillis 1000
blink $ t-1

We now apply the first rule of our recursion transfor-
mation to the function, which is used to move the Done
constructor through any conditionals:

forall f x.
Done <$> if b then f else g

=
if b then (Done <$> f) else (Done <$> g)

Applying this rule to our function gives:

blinkI :: Word8 -> Arduino (Iter Word8 ())
blinkI t = if (t == 0)

then Done <$> return ()
else Done <$> (do

digitalWrite led True
delayMillis 1000
digitalWrite led False
delayMillis 1000
blink (t-1)

We now introduce the other basic rule of our recursive
transformation to move the Done constructor call to the end
of the bind chain.

forall f g.
Done <$> (f >>= g)

=
f >>= \ x -> Done <$> g x.

Applying this rule repeatedly we obtain:

blinkI :: Word8 -> Arduino (Iter Word8 ())
blinkI t = if (t == 0)

then Done <$> return ()
else do

digitalWrite led True
delayMillis 1000
digitalWrite led False
delayMillis 1000
Done <$> (blink (t-1))

Finally, in the branches where the recursive function call
is present, we can apply the following rule to eliminate the
recursive call, f, instead inserting the Step constructor.

forall x.
Done <$> (f x)

=
Step <$> (return x)

With our example, and applying the rule, it then becomes:
blinkI :: Word8 -> Arduino (Iter Word8 ())
blinkI t = if (t == 0)

then Done <$> return ()
else do

digitalWrite led True
delayMillis 1000
digitalWrite led False
delayMillis 1000
Step <$> (return (t-1))

Finally, we use the following rule involving the Done con-
structor, and an equivalent one for the Step constructor.

forall x.
Done <$> (return x)

=
return (Done x)

This moves the constructor inside of the return, and leaves
us with the final transformed version:

blinkI :: Word8 -> Arduino (Iter Word8 ())
blinkI t = if (t == 0)

then return (Done ())
else do

digitalWrite led True
delayMillis 1000
digitalWrite led False
delayMillis 1000
return (Step (t-1))

6.2 Translating to Haskino Iteration
The example transformation of the last section was demon-
strated on the shallow version of the DSL for clarity. We
would now like to replace the iterLoop function which is
written in Haskell, with the Haskino iteration primitive. This
primitive has the following type:

iterateE :: Expr a ->
(Expr a -> Arduino (ExprEither a b)) ->
Arduino (Expr b)
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The Haskino expression language also has an ExprEither
type, which will be used instead of the Iter type, and is
defined as:

data ExprEither a b where
ExprLeft :: (ExprB a, ExprB b) =>

Expr a -> ExprEither a b
ExprRight :: (ExprB a, ExprB b) =>

Expr b -> ExprEither a b

As the iterateE and ExprEither are defined in the deep
version of Haskino, it is preferable to do the recursive trans-
forming after first transforming the example from the shal-
low language to the deep using the transformation from
Section 4. Doing so gives us the following for the example
from the previous section:

blinkE :: Expr Word8 -> Arduino (Expr ())
blinkE t =

ifThenElseE (t ==* rep 0)
(return (rep ()))
(do

digitalWriteE (rep led) (rep True)
delayMillisE (rep 1000)
digitalWriteE (rep led) (rep False)
delayMillisE (rep 1000)
blinkE (t - (rep 1))

We now can use the method we demonstrated in the pre-
vious section, using iterateE instead of iterLoop, and the
ExprEither type instead of the Iter type. We also need to
replace the conditional used in the function, as ifThenElseE
is only defined over one type, and instead we will use the
ifThenElseEither which is defined over two types.

ifThenElseEither :: (ExprB a, ExprB b) =>
Expr Bool ->
Arduino (ExprEither a b) ->
Arduino (ExprEither a b) ->
Arduino (ExprEither a b)

Applying the recursion transformation method, using the
ExprLeft constructor in place of the Step constructor, and
ExprRight in place of Done we get:

blinkE :: Expr Word8 -> Arduino (Expr ())
blinkE t = iterateE t blinkEI

blinkEI :: Expr Word8 ->
Arduino (ExprEither Word8 ())

blinkEI t =
ifThenElseEither (t ==* rep 0)

(return (ExprRight (rep ())))
(do

digitalWriteE (rep led) (rep True)
delayMillisE (rep 1000)
digitalWriteE (rep led) (rep False)
delayMillisE (rep 1000)
return (ExprLeft (t - (rep 1)))

6.3 Second Recursion Example
As a second example, we present a transformation of recur-
sion which demonstrates both a recursive function which
returns a non-unit value, and the ability to greatly simplify a
deep EDSL function by being able to write it in the shallow
EDSL.

A common peripheral used on the Arduino is a small LCD
display, and some of these display units also have a set of
five buttons that may be used to indicate Up, Down, Left,
Right, and Select. A press of one of these buttons is detected
by the user program by reading a 16 bit analog input, where
each single button press is denoted by a range of values.
The shallow version of a recursive function which waits for
one of the keys to be pressed, and returns an 8 bit unsigned
integer corresponding to the button pressed is shown below:

analogKey :: Arduino Word8
analogKey = do

v <- analogRead button2
case v of

| v < 30 -> return KeyRight
| v < 150 -> return KeyUp
| v < 350 -> return KeyDown
| v < 535 -> return KeyLeft
| v < 760 -> return KeySelect

_ -> analogKey ()

The following is the resulting deep version after shallow
to deep and recursive transformations:

analogKeyE :: Arduino (Expr Word8)
analogKeyE = analogKeyE' (lit ())

analogKeyE' :: Expr () -> Arduino (Expr Word8)
analogKeyE' t = iterateE t analogKeyE'I

analogKeyE'I :: Expr () ->
Arduino (ExprEither () Word8)

analogKeyE'I _ = do
v <- analogReadE button2
ifThenElseEither (v <* 30)

(return (ExprRight (lit KeyRight)))
(ifThenElseEither (v <* 150)

(return (ExprRight (lit KeyUp)))
(ifThenElseEither (v <* 350)

(return (ExprRight (lit KeyDown)))
(ifThenElseEither (v <* 535)

(return (ExprRight (lit KeyLeft)))
(ifThenElseEither (v <* 760)

(return (ExprRight (lit KeySelect)))
(return (ExprLeft (lit ())))))))

Our method of transformation from Sections 6.1 and 6.2
works for functions with one argument, but not with func-
tions with zero arguments as in this example. To transform
functions of this type require us to first transform the func-
tion into one that takes a parameter of type Expr ()which is
not used in the body of the function, but allows us to use the
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iterateE construct, and the ExprEither type, both of which
are parameterized over two types.

With this example, we can see the advantage of using the
pattern matching notation in the shallow version, as opposed
to the more verbose deep notation.

7 Plugin Architecture and Implementation
The shallow to deep transformations, as well as the recur-
sive transformations in our system, are implemented us-
ing the GHC Plugins mechanism [11]. Our plugin manipu-
lates the Haskell module being compiled through a series
of Core to Core passes, where Core is GHC’s intermediate
language[24].
A Haskell Module’s top level ModGuts data structure is

carried throughout all phases of the compiler, including plu-
gin passes. This data structure contains not only the Core of
the module under compilation, but also a global reader envi-
ronment of all in-scope symbols, GHC transformation rules,
information about other modules imported to the one under
compilation, and other information useful to the compiler
pass. Each pass of a GHC plugin is defined as the following
type:

ModGuts -> CoreM ModGuts

Each of the passes in our plugin transforms the list of
Core Bind’s, which are part of the ModGuts data type, into
another list of Core Bind’s in the returned ModGuts. The
plugin operates on Bind’s that are of the type of the DSL’s
Monad, which in our case study is one of type Arduino a.
By the time that the compiler has translated native Haskell
into Core, Bind’s are separated into recursive (Rec) and non-
recursive (NonRec) Bind’s. The passes associated with the
shallow to deep transformation operate on both Bind’s con-
structed with NonRec and those constructed with Rec, while
those associated with the tail recursion transformation oper-
ate only on the Bind’s constructed with Rec.

The plugin has been designed to be customized for other
monadic EDSLs, and not be used just for our case study EDSL
of Haskino. The types of the DSL monad and expression
types are specified in a single module as Template Haskell
names, allowing the plugin to be customized quickly for a
new EDSL based on the remote monad monadic structure.
Similarly, tables of EDSL primitives and rules components are
used in several of the passes to allow for EDSL customization,
and they will be described in more detail later in this section.
Finally, as the plugin has been developed, we have built up
the basis for a plugin toolkit which is designed to be lighter
weight than such tools as Hermit [10]. For example, we have
generalized and made into a utility the routines from Hermit
which are used to look up Core dictionaries, which frequently
need to be generated as part of the transformation process.

The plugin operates on a per module basis, transforming
all functions of the DSL type present in the module. GHC
pluginsmay be invoked by specifying the -fplugin flagwith

the plugin name either on the command line, or in a compiler
directive within the file. This allows us to specify on amodule
by module basis if the transformations will be done. Using
this method, a file may still be written directly in the Deep
EDSL without transformations, or in the Shallow EDSL with
transformations. The can be useful for regression testing
during development of the plugin, allowing the results of the
transformation to be compared the the native Deep code.

Simplifier Passes

Conditionals Pass

EDSL Primitives Pass

Return Translation Pass

Local Functions Pass

Rep Push and Abs Lambda Passes

Rep Abs Fusion Pass

Recursion Pass

Figure 4. Structure of Transformation Plugin Passes

The structure of the passes implemented by the GHC
plugin is shown in Figure 4. Each of the passes of the plugin
are described in one the following sections. The current
ordering of the passes is required for the passes to function
as written, and has been chosen to optimize the amount of
code required for each pass. However, the optimal ordering
as well as other optional orders, are still under investigation
as part of our ongoing research.

7.1 Simplifier Passes
The first pass executed by the plugin is a pass to run the
GHC simplifier, without any inlining, rule rewriting, or eta-
expansion.
This pass is run to complete any inlining of functions

that may be have been done in the GHC compiler before it
passes the Core for the module to our plugin. We found that
some functions that were inlined would be left in the form
of (\x -> F[x])(y), and running the simplifier pass will
perform the function application, and leave the Core in a
standard form for transformation by the rest of the plugin.
The second simplifier executed by the plugin is a pass

which removes the Haskell application operator $, which is
still present in the Core that the plugin receives. Replacing
this operator with a standard function application reduces
the number of rules that are required for subsequent passes.
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7.2 Conditionals Pass
The Conditionals Pass transforms standard Haskell if-then-
else expressions into the DSL’s embedded if-then-else con-
structs. The pass searches the Core for two armed Case
expressions with arms of False and True, which return a
type of Arduino a, and transforms them into the EDSL’s
IfThenElseE primitives according to the rules defined in
Section 5. Note, that this transformation will also transform
the syntax of Haskell Case pattern matching with guards of
the type shown in the analogKey example in Section 6.3.
Similarly, it looks for two armed Case expressions with

arms of False and True, which return a type in the EDSL’s
expression type class, and transforms them into the EDSL’s
ifB primitive.

7.3 EDSL Primitives Pass
The EDSL Primitives Pass translates the EDSL primitives (in
the case of a Remote Monad based EDSL, commands and pro-
cedures are the primitive data types) from their shallow form
to their deep form, as was shown by the rules in Section 4.

This pass performs the equivalent of the rules using a Core-
to-Core pass. It does this using a table of pairs of Template
Haskell names, the first element of the pair being the shallow
version of the primitive, and the second element being the
deep version of the primitive. The pass recursively searches
the Core for function applications of the first element (in
Core syntax, function application is represented by the App
data structure), and replaces it with an application of the
second. The pass compares the types of the two versions, and
performs the translation by adding application of rep and
abs functions as needed. For both commands and procedures,
it applies a rep function to each of the arguments of the
primitive, and for procedures, it also applies an abs to the
return value of the primitive using the fmap function, since
the return is of a monadic type.

7.4 Return Translation Pass
For monadic based DSLs, such as Haskino, instances of
return functions need to be transformed just as the EDSL
primitives are. This pass transforms the returns with the
equivalent of the following rule:

forall (x :: ExprB a => a)
return x

=
abs <$> return (rep x)

This transformation is equivalent to the transformation
of procedures used in the EDSL Primitives Pass.

7.5 Local Functions Pass
We had two options for handling local function definitions
in the module being compiled. As running most deeply em-
bedded DSLs consists of inlining those functions, the first

option is to simply inline any applications of those functions
in other functions inside of the module.

However, we are planning on adding Lambda expressions
to the Haskino Deep EDSL in the next phase of research, and
therefore we wanted a method that does not inline every-
thing in this pass of the transformation. Instead, we wanted
to translate all local functions that return type Arduino a
in place.

This pass replaces the shallow function body with a call of
a deep version of the function, as in the following example:

myRead :: Word8 -> Arduino Bool
myRead p = abs <$> (myReadDeep (rep p))

myReadDeep :: Expr Word8 -> Arduino Bool

What was the former body of the shallow version is trans-
formed by this pass to become the new body of the deep
version. Using this method, a module being transformed
that is dependent on a previously transformed module will
pass type checking during the initial GHC type checking
phase, before the untransformed Core is given to the plugin,
since both shallow and deep versions will be present in the
previous module.

This pass also replaces applications of shallow functions,
with applications of the deep functions. This means it applies
a rep function to each of the arguments of the function, and
an abs to the return value of the function using the fmap
function, similar to how EDSL procedures are transformed.

7.6 Rep Push and Abs Lambda Passes
The Rep Push and Abs Lambda passes are used to manipu-
late the worker- wrapper functions which were inserted by
the previous passes, transforming shallow expression func-
tions to deep, and moving the worker-wrapper functions for
possible fusion in the next pass.

The Rep Push pass is performed in the plugin in a similar
method to the DSL primitive pass, in that it contains a table
of pairs of the functions with the from and to functions to
transform for each of the EDSL Expr language operations.
(In the example in Section 4 discussing the Rep Push transfor-
mations, this pair consists of the (||) and (||*) functions).
One of the sets of pairs is defined for each of the DSL’s Expr
operations, to move the operation from a shallow operation
in basic Haskell types, to a deep operation using the Expr
language operators.
The Abs Lambda pass performs the equivalent of rules

described in Section 4. Two rule analogues push the abs
function applications throughmonadic >>= and >> operators,
and move the abs inside of lambdas. The second rule and the
elimination of the let expression is done in one step, which
has the form shown below.

forall (f :: Arduino a).
(\ x -> f[x]) . abs

=
(\ x' -> let x=abs x' in f[x])
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The abs function composition is eliminated, the lambda
argument x is renamed to x', it’s type is changed to Expr a,
and any occurrence of x in the body of the lambda is replaced
with abs(x').

7.7 Rep Abs Fusion Pass
This pass fuses the rep and abs pairs that have been moved
next to each other by the previous passes. It performs the
equivalent of the two rep-abs fusion rules described in Sec-
tion 4. After this pass is complete, there will be some appli-
cations of rep left in the Core, where it is required to lift
literal basic Haskell values into the EDSL’s Expr language.
There also may be some applications of abs left in the Core,
but due to Haskell’s lazy evaluation, these will never be eval-
uated. This will occur when an EDSL procedure’s return
value is not bound to a lambda argument, but is instead used
with the >> operator instead of the >>= operator. To simplify
the generated Core, these unevaluated instances of abs are
eliminated by a separate pass following the fusion pass.

7.8 Recursion Pass
The Recursion Pass transforms Deep EDSL tail recursive
functions into the Deep EDSL’s iterateE construct. It per-
forms the equivalent of rules described in Section 6 with a
Core-to-Core pass, and only operates on Core Bind’s con-
structed with Rec. It transforms tail recursive Haskino func-
tions with zero or one arguments. Recursive functions with
larger number of arguments are currently flagged to the user
as non-translatable. Transformation of these could be added
to the pass, but would require the addition of tuples to the
Haskino Deep EDSL.

A pass to detect functions with non-tail recursion, or with
mutual tail recursion, and issue an error to the user that they
are non-transformable, is planned for the next version.

8 Related Work
There have been several other efforts to blend shallow and
deep EDSL’s. Svenningsson and Axelsson [28] explored com-
bining deep and shallow embedding. They used a deep em-
bedding as a low level language, then extended the deep
embedding with a shallow embedding written on top of it.
Haskell type classes were used to minimize the effort of
adding new features to the language.
Yin-Yang [22] provides a framework for DSL embedding

in Scala which uses Scala macros to provide the translation
from a shallow to deep embedding. Yin-Yang goes beyond
the translation by also providing autogeneration of the deep
DSL from the shallow DSL. The focus of Yin-Yang is in gen-
eralizing the shallow to deep transformations, and does not
include recursive transformations.
Scherr and Chiba [26] proposed using load time implicit

staging, as opposed to compile time mechanisms, as an al-
ternative to deep embedding. Their prototype in Java allows

the user to write in a shallow EDSL, then extracts expression
semantics from Java bytecode at load time.

Forge [27] is a Scala based meta-EDSL framework which
can generate both shallow and deep embeddings from a
single EDSL specification. Embeddings generated by Forge
use abstract Rep types, analogous to our EDSL’s Expr types.
Their shallow embedding is generated as a pure Scala library,
while the deeply embedded version is generated as an EDSL
using the Delite [3] framework.

Both Yin-Yang and Delite are built on top of Lightweight
Modular Staging [25], a general purpose staging framework
for developing deep EDSL’s based on type directed transfor-
mations. Elliott developed GHC plugins [4][6] for compiling
Haskell to hardware [5], using worker-wrapper style trans-
formations equivalent to the abs and rep transformations
used in the Haskino plugin. These plugins were later gener-
alized to enable additional interpretations [7].

9 Conclusion and Future Work
Shallow EDSLs hosted in Haskell allow the programmer us-
ing the EDSL to write in relatively idiomatic Haskell, and
provide a quick turnaround development environment. Deep
EDSLs provide better performance and resource utilization
by allowing code generation from the DSL’s abstract syntax
tree. We have shown, using as an example the Haskino EDSL
being developed as part of our ongoing research, that auto-
matic transformation of a shallow to deep EDSL can provide
a combination of the benefits of both the shallow and deep
EDSLs.With one set of source code, an EDSL user is provided
with a quick turnaround, prototyping environment, and a
higher performance, generated code system.
The current plugin is designed to be customized for use

with different monadic EDSLs. In the future we would like
to generalize the technique, allowing the plugin to be used
with both monadic and non-monadic EDSLs. We would like
to extend the rules and plugins used in the shallow to deep
transformations to handle other higher level functions such
as mapM. We also would like to generalize the tools and rou-
tines we used within the transformation plugin, to provide a
framework or toolkit for writing such plugins.
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