
Project 3 Grades

• Grades are available on Blackboard
• Self evaluation is 5% and team evaluation 10%
• Overall: Great job! (In general, we noticed improvements across the board.)

• Evaluations: use professional language (these are not blog posts)
• Communication is the key (be open to your teammates' ideas)
• Make sure teammates are happy with the tasks they are covering
• Everybody should code

• Reminder: Appeals: Should you wish to appeal a grade that you have
received on a laboratory assignment, exam, or anything else, you must do so
within one week of receiving the graded item. (Syllabus)
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Why testing?

• Errors can happen in any engineering discipline
• Software is one of the most error-prone products of all engineering areas

• Vague requirements
• Complex in nature, undecidable problems are everywhere
• On average, 1-5 bugs per KLOC (thousand lines of code)

• Almost all software applications in the market have a number of bugs

• Testing is costly
• The most time consuming and expensive part in software development
• Extensive hardware-software integration requires more testing
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Why testing?

• However, not testing is even more expensive!

• THERAC-25 Radiation Therapy (2 death, 1985)
• Shooting down of Airbus A300 (290 death, 1988)
• Mars Climate Orbiter ($165M, 1998)
• Northeast Blackout ($6 billions, 2003)
• Inadequate software testing costs in the US between $22 and $59 billion in 2002
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[2002 NIST report “The Economic Impacts of Inadequate Infrastructure for Software Testing”]



Approach to reduce bugs

• Inspection: manually review the code to detect faults
• Hard to evaluate

• Static checking: identify specific problems in software by scanning the 
code or all possible paths
• Limited problem types; false positive

• Formal Proof: formally prove that the program implements the 
specification
• Difficult to have a formal specification; effort costly

• Testing: feed input to software and run it to see whether its behavior 
is as expected
• Need test oracles; limited coverage; no 100% error free guarantee
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Approach to reduce bugs

• The winner is testing
• More reliable and cheaper than inspection
• Inspection was the major answer in the old days (or when testing is expensive)
• Linear rewards: “you get what you pay for”

“50% of my employees are testers, and the rest spends 50% of their time testing”
---- Bill Gates, 1995
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Testing: Concepts

Test case
Test oracle
Test suite
Test script
Test driver
Test result
Test coverage
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• Testing (IEEE definition)
• An execution of software in a controlled environment (input) 

and “validating” the output



Testing: Concepts

Test case
Test oracle
Test suite
Test script
Test driver
Test result
Test coverage
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• Test case
• An execution of the software with a given list of input values

• Include:
• Input values, sometimes fed in different steps
• Expected outputs



Testing: Concepts

Test case
Test oracle
Test suite
Test script
Test driver
Test result
Test coverage
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• Test oracle
• The expected outputs of software by feeding in a list of 

input values 
• A mechanism for determining whether a test has passed 

or failed
• Part of test cases

• Hardest problem in auto-testing: test oracle problem



Testing: Concepts

Test case
Test oracle
Test suite
Test script
Test driver
Test result
Test coverage
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• Test Suite
• A collection of test cases
• Usually these test cases share similar pre-requisites 

and configurations
• Usually can be ran together in sequence

• Different test suites for different purposes
• smoke test, certain platforms, certain feature, 

performance, etc.



Testing: Concepts

Test case
Test oracle
Test suite
Test script
Test driver
Test result
Test coverage
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• Test Script
• A script to run a sequence of test cases or a test 

suite automatically

• Test Driver
• A software framework that can load a collection of 

test cases or a test suite
• It can usually handle the configuration and 

comparison between expected outputs and  actual 
outputs



Testing: Concepts

Test case
Test oracle
Test suite
Test script
Test driver
Test result
Test coverage
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• Test Coverage
• A measurement to evaluate how well the testing is done
• Can be based on multiple elements
• code
• input combinations
• specifications



Testing: Granularity

• Unit Testing
• Test of a single unit/module

• Integration Testing
• Test the interaction between modules

• System Testing
• Test the system as a whole; comply to requirements
• Environments, external exceptions 
• By developers on test cases

• Acceptance Testing
• Validate the system against user requirements
• Usually on GUI 
• By customers with no formal test  cases
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“Verification” “Validation”

Testing: Granularity

• Unit Testing
• Test of a single unit/module

• Integration Testing
• Test the interaction between modules

• System Testing
• Test the system as a whole; comply to req.
• Environments, external exceptions 
• By developers on test cases

• Acceptance Testing
• Validate the system against user requirements
• Usually on GUI 
• By customers with no formal test  cases

14EECS 448 Software Engineering



Testing: Logical Organization
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Unit 
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Unit 
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Unit 
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Component 
code

Component 
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Component 
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Quality 
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Acceptance 
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Installation 
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System 
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System 
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components 
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Verifies that functional 
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higher level testing



Unit Testing

• Testing a basic module of the software
• A function, a class, a component
• The goal is to find differences between the design model and its implementation

• Typical problems revealed
• Interface
• Local data structures
• Algorithms

• Boundary conditions
• Error handling
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Unit Test Framework

driver stub

To isolate the module to be tested 
from the rest of the system



Unit Testing Framework

• xUnit/JUnit

• Created by Kent Beck in 1989, 70 xUnit frameworks for corresponding languages

• First one was sUnit (for smalltalk)

• JUnit is the most popular xUnit framework: http://www.junit.org

• Usually use the assert*() methods that define expected state 

• assertTrue(4 == (2 * 2));

• assertEquals(expected, actual);

• assertNull(Object object);
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http://www.junit.org/


Unit Testing Example

• Safe Home Access Project: “unlock” use case
• Let’s test the “Key Checker”  module
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(a)

k := create()

sk := getNext()

: Controller : Checker : KeyStorage

enterKey()

k : Key

val := checkKey(k)
loop

compare()

[for all stored keys]

k := create()

sk := getNext()

: Controller : Checker : KeyStorage

enterKey()

k : Key

val := checkKey(k)
loop

compare()

[for all stored keys]

(b)

k := create()

testDriver : : KeyStoragek : Key: Checker

loop [for all stored keys]

start()

display
result

sk := getNext()

result :=
checkKey(k)

Test driver Test stubsTested component

compare()

k := create()

testDriver : : KeyStoragek : Key: Checker

loop [for all stored keys]

start()

display
result

sk := getNext()

result :=
checkKey(k)

Test driver Test stubsTested component

compare()



Unit Testing Example
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Example test case for the Key Checker class

public class CheckerTest {

// test case to check that invalid key is rejected

@Test public void

checkKey_anyState_invalidKeyRejected() {

// 1. set up objects

Checker checker = new Checker( /* constructor params */ );

// 2. act on the tested object

Key invalidTestKey = new Key( /* setup with invalid code */ );

boolean result = checker.checkKey(invalidTestKey);

// 3. verify the outcome is as expected

assertEqual(result, false);

}

}

Example test case method:

checkKey_anyState_invalidKeyRejected()



Unit Testing

• Assertions
• “assertEqual(result, false)”

• We expect the output as “false” for an invalid key

• Consider the following test method:
public void testCapacity() {         

int size= fFull.size();

for (int i= 0; i < 100; i++){

fFull.addElement(new Integer(i));

}

assertTrue(fFull.size() == 100+size);  
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assertTrue(fFull.size() == 100+size);

Assertion failed: myTest.java:150 
(expected true but was false)

assertEquals(100+size, fFull.size()); 

Assertion failed: myTest.java:150 
(expected 102 but was 103)



Integration Testing

• Testing the interaction among a number of interactive components

• Strategies
• Big Bang
• Bottom Up
• Top down
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Big Bang
Prepare all relevant components

Data, global variables, etc.

Put them together

Pray!

Common in small projects

Requires no extra cost for integration

Difficult to address errors à may work well if 
interfaces are well-defined



Integration Testing

• Testing the interaction among a number of interactive components
• Strategies
• Big Bang
• Bottom Up
• Top down
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Bottom-Up
A hierarchical structure of all software features
The lowest units first - the unit that depends on nothing else

Do not need test stubs 
Requires test drivers, which can be re-used
Support parallel integration
No working system until the end!
Need more interactions among teams working on each component



Integration Testing Example
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System 
hierarchy:

Logger DeviceCtrlPhotoSObsrv

KeyStorage Key

KeyChecker

Controller

Level-1

Level-2

Level-3

Level-4

Logger DeviceCtrlPhotoSObsrv

KeyStorage Key

KeyChecker

Controller

Level-1

Level-2

Level-3

Level-4

Bottom-up 
integration 
testing:

Test 
Logger

Test 
PhotoSObsrv

Test 
DeviceCtrl

Test Key & 
KeyStorage

Test KeyChecker
& KeyStorage & 

Key

Test Controller & 
KeyChecker & KeyStorage & 
Key & Logger & PhotoSObsrv

& DeviceCtrl

Test 
Logger

Test 
PhotoSObsrv

Test 
DeviceCtrl

Test Key & 
KeyStorage

Test KeyChecker
& KeyStorage & 

Key

Test Controller & 
KeyChecker & KeyStorage & 
Key & Logger & PhotoSObsrv

& DeviceCtrl



Integration Testing

• Testing the interaction among a number of interactive components

• Strategies
• Big Bang
• Bottom Up
• Top down
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Top Down
Starts by testing the units at the highest level of hierarchy

Gradually add components

Depth-first or breadth-first integration

Easy to understand; lead to a working system earlier

No need to build test drivers (only test stubs)

Centralized (cannot be parallelized)



Integration Testing Example
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System 
hierarchy:

Logger DeviceCtrlPhotoSObsrv

KeyStorage Key

KeyChecker

Controller

Level-1

Level-2

Level-3

Level-4

Logger DeviceCtrlPhotoSObsrv

KeyStorage Key

KeyChecker

Controller

Level-1

Level-2

Level-3

Level-4

Top-down 
integration 
testing:

Test 
Controller

Test 
Controller & 
KeyChecker

Test Controller & 
KeyChecker & 

KeyStorage & Key

Test Controller & 
KeyChecker & KeyStorage & 
Key & Logger & PhotoSObsrv

& DeviceCtrl

Test 
Controller

Test 
Controller & 
KeyChecker

Test Controller & 
KeyChecker & 

KeyStorage & Key

Test Controller & 
KeyChecker & KeyStorage & 
Key & Logger & PhotoSObsrv

& DeviceCtrl



Integration Testing

• Sandwich integration
• Combine top-down and bottom-up
• The middle level is the target level
• Incrementally use components of the target level in both directions
• Can test earlier; can be parallelized

• Regression Testing
• Test a new version with old test cases
• Used when a new module is added
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System Testing

• Test the system as a whole
• Test if the system complies with the functional and non-function requirements

• Usually test against specifications
• For each item in the specification

• Work out a test case and a test oracle
• Test boundary values
• Test with invalid inputs
• Test with environment errors
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System Testing

• Test the system as a whole
• Test if the system complies with the functional and non-function requirements

• Consider environment issues
• Building

• Compile options and configurations
• Underlying platforms

• OS, database, application server, browser
• Compatibility 

• Different platforms, configurations

28EECS 448 Software Engineering



Acceptance Testing

• Testing by users of the system as a whole
• If specifications comply with user requirements

e.g., REQ3: “given a valid key code, the system should unlock the door”
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Acceptance Testing

• Testing by users on the system as a whole
• If specifications comply with user requirements

e.g., REQ3: “given a valid key code, the system should unlock the door”
We can derive test cases to

• Test with a valid key of a current tenant on his apartment (pass)
• Test with a valid key of a current tenant on another apartment (fail)
• Test with an invalid key on any apartment (fail)
• Test with the key of removed tenant on his previous apartment (fail)
• Test with a valid key of a newly added tenant on his apartment (pass)
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User Acceptance Testing
• Write as user acceptance test case – a detailed procedure that fully 

tests a use case or one of its flows of events
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Test-case Identifier: TC-1

Use Case Tested: UC-1, main success scenario, and UC-7

Pass/fail Criteria:
The test passes if the user enters a key that is contained in the
database, with less than a maximum allowed number of
unsuccessful attempts

Input Data: Numeric keycode, door identifier

Test Procedure: Expected Result:

Step 1. Type in an incorrect
keycode and a valid door
identifier

System beeps to indicate failure;
records unsuccessful attempt in the database;
prompts the user to try again

Step 2. Type in the correct
keycode and door identifier

System flashes a green light to indicate success;
records successful access in the database;
disarms the lock device



Acceptance Testing

• GUI Testing
• Hard to automate and hard to compare results using oracles

• Manual testing is still widely performed for GUI testing
• Manually explore the user interface 

• “Record and replay”: keyboard inputs, clicks, UI events

• Record the steps in the test for future testing
• Observe the GUI for errors
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