
Project 3 Grades

• Grades are available on Blackboard
• Self evaluation is 5% and team evaluation 10%
• Overall: Great job! (In general, we noticed improvements across the board.)

• Evaluations: use professional language (these are not blog posts)
• Communication is the key (be open to your teammates' ideas)
• Make sure teammates are happy with the tasks they are covering
• Everybody should code

• Reminder: Appeals: Should you wish to appeal a grade that you have
received on a laboratory assignment, exam, or anything else, you must do so
within one week of receiving the graded item. (Syllabus)

Software Testing
Prof. Alex Bardas

EECS 448 Software Engineering

Why testing?

• Errors can happen in any engineering discipline
• Software is one of the most error-prone products of all engineering areas

• Vague requirements
• Complex in nature, undecidable problems are everywhere
• On average, 1-5 bugs per KLOC (thousand lines of code)

• Almost all software applications in the market have a number of bugs

• Testing is costly
• The most time consuming and expensive part in software development
• Extensive hardware-software integration requires more testing

3EECS 448 Software Engineering

Why testing?

• However, not testing is even more expensive!

• THERAC-25 Radiation Therapy (2 death, 1985)
• Shooting down of Airbus A300 (290 death, 1988)
• Mars Climate Orbiter ($165M, 1998)
• Northeast Blackout ($6 billions, 2003)
• Inadequate software testing costs in the US between $22 and $59 billion in 2002

4EECS 448 Software Engineering

[2002 NIST report “The Economic Impacts of Inadequate Infrastructure for Software Testing”]

Approach to reduce bugs

• Inspection: manually review the code to detect faults
• Hard to evaluate

• Static checking: identify specific problems in software by scanning the
code or all possible paths
• Limited problem types; false positive

• Formal Proof: formally prove that the program implements the
specification
• Difficult to have a formal specification; effort costly

• Testing: feed input to software and run it to see whether its behavior
is as expected
• Need test oracles; limited coverage; no 100% error free guarantee

5EECS 448 Software Engineering

Approach to reduce bugs

• The winner is testing
• More reliable and cheaper than inspection
• Inspection was the major answer in the old days (or when testing is expensive)
• Linear rewards: “you get what you pay for”

“50% of my employees are testers, and the rest spends 50% of their time testing”
---- Bill Gates, 1995

6EECS 448 Software Engineering

Testing: Concepts

Test case
Test oracle
Test suite
Test script
Test driver
Test result
Test coverage

7EECS 448 Software Engineering

• Testing (IEEE definition)
• An execution of software in a controlled environment (input)

and “validating” the output

Testing: Concepts

Test case
Test oracle
Test suite
Test script
Test driver
Test result
Test coverage

8EECS 448 Software Engineering

• Test case
• An execution of the software with a given list of input values

• Include:
• Input values, sometimes fed in different steps
• Expected outputs

Testing: Concepts

Test case
Test oracle
Test suite
Test script
Test driver
Test result
Test coverage

9EECS 448 Software Engineering

• Test oracle
• The expected outputs of software by feeding in a list of

input values
• A mechanism for determining whether a test has passed

or failed
• Part of test cases

• Hardest problem in auto-testing: test oracle problem

Testing: Concepts

Test case
Test oracle
Test suite
Test script
Test driver
Test result
Test coverage

10EECS 448 Software Engineering

• Test Suite
• A collection of test cases
• Usually these test cases share similar pre-requisites

and configurations
• Usually can be ran together in sequence

• Different test suites for different purposes
• smoke test, certain platforms, certain feature,

performance, etc.

Testing: Concepts

Test case
Test oracle
Test suite
Test script
Test driver
Test result
Test coverage

11EECS 448 Software Engineering

• Test Script
• A script to run a sequence of test cases or a test

suite automatically

• Test Driver
• A software framework that can load a collection of

test cases or a test suite
• It can usually handle the configuration and

comparison between expected outputs and actual
outputs

Testing: Concepts

Test case
Test oracle
Test suite
Test script
Test driver
Test result
Test coverage

12EECS 448 Software Engineering

• Test Coverage
• A measurement to evaluate how well the testing is done
• Can be based on multiple elements
• code
• input combinations
• specifications

Testing: Granularity

• Unit Testing
• Test of a single unit/module

• Integration Testing
• Test the interaction between modules

• System Testing
• Test the system as a whole; comply to requirements
• Environments, external exceptions
• By developers on test cases

• Acceptance Testing
• Validate the system against user requirements
• Usually on GUI
• By customers with no formal test cases

13EECS 448 Software Engineering

“Verification” “Validation”

Testing: Granularity

• Unit Testing
• Test of a single unit/module

• Integration Testing
• Test the interaction between modules

• System Testing
• Test the system as a whole; comply to req.
• Environments, external exceptions
• By developers on test cases

• Acceptance Testing
• Validate the system against user requirements
• Usually on GUI
• By customers with no formal test cases

14EECS 448 Software Engineering

Testing: Logical Organization

15EECS 448 Software Engineering

Unit
test

Unit
test

Unit
test

Integration
test

Component
code

Component
code

Component
code

Tested component

Integrated
modules

Function
test

Quality
test

Acceptance
test

Installation
test

System
test

System
in use

Ensure that each
component works
as specified

Ensures that all
components
work together

Verifies that functional
requirements are
satisfied

Mostly verifies
non-functional
requirements

Customer
verifies all
requirements

Testing in
user

environment

higher level testing

Unit Testing

• Testing a basic module of the software
• A function, a class, a component
• The goal is to find differences between the design model and its implementation

• Typical problems revealed
• Interface
• Local data structures
• Algorithms

• Boundary conditions
• Error handling

16EECS 448 Software Engineering

Unit Test Framework

driver stub

To isolate the module to be tested
from the rest of the system

Unit Testing Framework

• xUnit/JUnit

• Created by Kent Beck in 1989, 70 xUnit frameworks for corresponding languages

• First one was sUnit (for smalltalk)

• JUnit is the most popular xUnit framework: http://www.junit.org

• Usually use the assert*() methods that define expected state

• assertTrue(4 == (2 * 2));

• assertEquals(expected, actual);

• assertNull(Object object);

17EECS 448 Software Engineering

http://www.junit.org/

Unit Testing Example

• Safe Home Access Project: “unlock” use case
• Let’s test the “Key Checker” module

18EECS 448 Software Engineering

(a)

k := create()

sk := getNext()

: Controller : Checker : KeyStorage

enterKey()

k : Key

val := checkKey(k)
loop

compare()

[for all stored keys]

k := create()

sk := getNext()

: Controller : Checker : KeyStorage

enterKey()

k : Key

val := checkKey(k)
loop

compare()

[for all stored keys]

(b)

k := create()

testDriver : : KeyStoragek : Key: Checker

loop [for all stored keys]

start()

display
result

sk := getNext()

result :=
checkKey(k)

Test driver Test stubsTested component

compare()

k := create()

testDriver : : KeyStoragek : Key: Checker

loop [for all stored keys]

start()

display
result

sk := getNext()

result :=
checkKey(k)

Test driver Test stubsTested component

compare()

Unit Testing Example

19EECS 448 Software Engineering

Example test case for the Key Checker class

public class CheckerTest {

// test case to check that invalid key is rejected

@Test public void

checkKey_anyState_invalidKeyRejected() {

// 1. set up objects

Checker checker = new Checker(/* constructor params */);

// 2. act on the tested object

Key invalidTestKey = new Key(/* setup with invalid code */);

boolean result = checker.checkKey(invalidTestKey);

// 3. verify the outcome is as expected

assertEqual(result, false);

}

}

Example test case method:

checkKey_anyState_invalidKeyRejected()

Unit Testing

• Assertions
• “assertEqual(result, false)”

• We expect the output as “false” for an invalid key

• Consider the following test method:
public void testCapacity() {

int size= fFull.size();

for (int i= 0; i < 100; i++){

fFull.addElement(new Integer(i));

}

assertTrue(fFull.size() == 100+size);

20EECS 448 Software Engineering

assertTrue(fFull.size() == 100+size);

Assertion failed: myTest.java:150
(expected true but was false)

assertEquals(100+size, fFull.size());

Assertion failed: myTest.java:150
(expected 102 but was 103)

Integration Testing

• Testing the interaction among a number of interactive components

• Strategies
• Big Bang
• Bottom Up
• Top down

21EECS 448 Software Engineering

Big Bang
Prepare all relevant components

Data, global variables, etc.

Put them together

Pray!

Common in small projects

Requires no extra cost for integration

Difficult to address errors à may work well if
interfaces are well-defined

Integration Testing

• Testing the interaction among a number of interactive components
• Strategies
• Big Bang
• Bottom Up
• Top down

22EECS 448 Software Engineering

Bottom-Up
A hierarchical structure of all software features
The lowest units first - the unit that depends on nothing else

Do not need test stubs
Requires test drivers, which can be re-used
Support parallel integration
No working system until the end!
Need more interactions among teams working on each component

Integration Testing Example

23EECS 448 Software Engineering

System
hierarchy:

Logger DeviceCtrlPhotoSObsrv

KeyStorage Key

KeyChecker

Controller

Level-1

Level-2

Level-3

Level-4

Logger DeviceCtrlPhotoSObsrv

KeyStorage Key

KeyChecker

Controller

Level-1

Level-2

Level-3

Level-4

Bottom-up
integration
testing:

Test
Logger

Test
PhotoSObsrv

Test
DeviceCtrl

Test Key &
KeyStorage

Test KeyChecker
& KeyStorage &

Key

Test Controller &
KeyChecker & KeyStorage &
Key & Logger & PhotoSObsrv

& DeviceCtrl

Test
Logger

Test
PhotoSObsrv

Test
DeviceCtrl

Test Key &
KeyStorage

Test KeyChecker
& KeyStorage &

Key

Test Controller &
KeyChecker & KeyStorage &
Key & Logger & PhotoSObsrv

& DeviceCtrl

Integration Testing

• Testing the interaction among a number of interactive components

• Strategies
• Big Bang
• Bottom Up
• Top down

24EECS 448 Software Engineering

Top Down
Starts by testing the units at the highest level of hierarchy

Gradually add components

Depth-first or breadth-first integration

Easy to understand; lead to a working system earlier

No need to build test drivers (only test stubs)

Centralized (cannot be parallelized)

Integration Testing Example

25EECS 448 Software Engineering

System
hierarchy:

Logger DeviceCtrlPhotoSObsrv

KeyStorage Key

KeyChecker

Controller

Level-1

Level-2

Level-3

Level-4

Logger DeviceCtrlPhotoSObsrv

KeyStorage Key

KeyChecker

Controller

Level-1

Level-2

Level-3

Level-4

Top-down
integration
testing:

Test
Controller

Test
Controller &
KeyChecker

Test Controller &
KeyChecker &

KeyStorage & Key

Test Controller &
KeyChecker & KeyStorage &
Key & Logger & PhotoSObsrv

& DeviceCtrl

Test
Controller

Test
Controller &
KeyChecker

Test Controller &
KeyChecker &

KeyStorage & Key

Test Controller &
KeyChecker & KeyStorage &
Key & Logger & PhotoSObsrv

& DeviceCtrl

Integration Testing

• Sandwich integration
• Combine top-down and bottom-up
• The middle level is the target level
• Incrementally use components of the target level in both directions
• Can test earlier; can be parallelized

• Regression Testing
• Test a new version with old test cases
• Used when a new module is added

26EECS 448 Software Engineering

System Testing

• Test the system as a whole
• Test if the system complies with the functional and non-function requirements

• Usually test against specifications
• For each item in the specification

• Work out a test case and a test oracle
• Test boundary values
• Test with invalid inputs
• Test with environment errors

27EECS 448 Software Engineering

System Testing

• Test the system as a whole
• Test if the system complies with the functional and non-function requirements

• Consider environment issues
• Building

• Compile options and configurations
• Underlying platforms

• OS, database, application server, browser
• Compatibility

• Different platforms, configurations

28EECS 448 Software Engineering

Acceptance Testing

• Testing by users of the system as a whole
• If specifications comply with user requirements

e.g., REQ3: “given a valid key code, the system should unlock the door”

29EECS 448 Software Engineering

Acceptance Testing

• Testing by users on the system as a whole
• If specifications comply with user requirements

e.g., REQ3: “given a valid key code, the system should unlock the door”
We can derive test cases to

• Test with a valid key of a current tenant on his apartment (pass)
• Test with a valid key of a current tenant on another apartment (fail)
• Test with an invalid key on any apartment (fail)
• Test with the key of removed tenant on his previous apartment (fail)
• Test with a valid key of a newly added tenant on his apartment (pass)

30EECS 448 Software Engineering

User Acceptance Testing
• Write as user acceptance test case – a detailed procedure that fully

tests a use case or one of its flows of events

31EECS 448 Software Engineering

Test-case Identifier: TC-1

Use Case Tested: UC-1, main success scenario, and UC-7

Pass/fail Criteria:
The test passes if the user enters a key that is contained in the
database, with less than a maximum allowed number of
unsuccessful attempts

Input Data: Numeric keycode, door identifier

Test Procedure: Expected Result:

Step 1. Type in an incorrect
keycode and a valid door
identifier

System beeps to indicate failure;
records unsuccessful attempt in the database;
prompts the user to try again

Step 2. Type in the correct
keycode and door identifier

System flashes a green light to indicate success;
records successful access in the database;
disarms the lock device

Acceptance Testing

• GUI Testing
• Hard to automate and hard to compare results using oracles

• Manual testing is still widely performed for GUI testing
• Manually explore the user interface

• “Record and replay”: keyboard inputs, clicks, UI events

• Record the steps in the test for future testing
• Observe the GUI for errors

32EECS 448 Software Engineering

References

• Prof. Fengjun Li’s EECS 448 Fall 2015 slides

• This slide set has been extracted and updated from the slides
designed to accompany Software Engineering: A Practitioner’s
Approach, 8/e (McGraw-Hill 2014) by Roger Pressman

33

