
Requirements Modeling:
Class-Based

Prof. Alex Bardas

Class-Based Modeling

• A class-based model contains
• Objects
• What the system will manipulate

• Operations (methods or services)
• What to be applied to the objects to effect the manipulation

• Relationships (some hierarchical) between objects
• Collaborations between the classes that are defined

EECS 448 Software Engineering

Identifying Classes

6 selection characteristics
1. Retained information

The potential class will be useful during analysis only if information about it must be
remembered so that the system can function.

2. Needed services
The potential class must have a set of identifiable operations that can change the value of its
attributes in some way.

EECS 448 Software Engineering

Identifying Classes

6 selection characteristics
3. Multiple attributes

During requirement analysis, the focus should be on “major” information.
A class with a single attribute may, in fact, be useful during design, but is probably better
represented as an attribute of another class during the analysis activity.

4. Common attributes
A set of attributes can be defined for the potential class and these attributes apply to all
instances of the class.

EECS 448 Software Engineering

Identifying Classes

6 selection characteristics
5. Common operations

A set of operations can be defined for the potential class and these operations apply to all
instances of the class.

6. Essential requirements
External entities that appear in the problem space and produce or consume information
essential to the operation of any solution for the system will almost always be defined as
classes in the requirements model.

EECS 448 Software Engineering

Attributes

• Attributes define a class
• For the same class, attributes can be very different in different contexts
• What data items fully define this class in the problem context?

The Player class for professional baseball players
• Playing statistics software

• Name, position, batting average, fielding percentage, years played, and games played, …

• Pension fund software
• Name, average salary, pension plan options chosen, mailing address, …

EECS 448 Software Engineering

Operations

• Operations define the behavior of an object:
• Manipulate data

• e.g., adding, deleting, reformatting, selecting

• Perform a computation
• Inquire the state of an object
• Monitor an object for the occurrence of a controlling event

• e.g., communications between objects

7EECS 448 Software Engineering

Case Study: Safe Home

The SafeHome security function enables the
homeowner to configure the security system when it’s
installed, monitors all sensors connected to the
security system, and interacts with the homeowner
through the Internet, a PC, or a control panel.

8EECS 448 Software Engineering

Potential Class Type

Case Study: Safe Home

The SafeHome security function enables the
homeowner to configure the security system when it
is installed, monitors all sensors connected to the
security system, and interacts with the homeowner
through the Internet, a PC, or a control panel.

9EECS 448 Software Engineering

Potential Class Type

homeowner role

(security) system thing

sensor external entity

control panel external entity

Case Study: Safe Home

During installation, the SafeHome PC is used to
program and configure the system. Each sensor is
assigned a number and type, a master password is
programmed for arming and disarming the system,
and telephone number(s) are input for dialing when a
sensor event occurs.

10EECS 448 Software Engineering

Potential Class Type

homeowner role

system thing

sensor external entity

control panel external entity

Case Study: Safe Home

During installation, the SafeHome PC is used to
program and configure the system. Each sensor is
assigned a number and type, a master password is
programmed for arming and disarming the system,
and telephone number(s) are input for dialing when a
sensor event occurs.

11EECS 448 Software Engineering

Potential Class Type

homeowner role

system thing

sensor external entity

control panel external entity

Installation event

number, type thing

master password thing

telephone number thing

sensor event event

Case Study: Safe Home

When a sensor event is recognized, the software
invokes an audible alarm attached to the system. After
a delay time that is specified by the homeowner during
system configuration activities, the software dials a
telephone number of a monitoring service, provides
information about the location, reporting the nature of
the event that has been detected. The telephone
number will be redialed every 20 seconds until
telephone connection is obtained.

12EECS 448 Software Engineering

Potential Class Type

homeowner role

system thing

sensor external entity

control panel external entity

Installation event

number, type thing

master password thing

telephone number thing

sensor event event

Case Study: Safe Home

When a sensor event is recognized, the software
invokes an audible alarm attached to the system. After
a delay time that is specified by the homeowner during
system configuration activities, the software dials a
telephone number of a monitoring service, provides
information about the location, reporting the nature of
the event that has been detected. The telephone
number will be redialed every 20 seconds until
telephone connection is obtained.

13EECS 448 Software Engineering

Potential Class Type

homeowner role

system thing

sensor external entity

control panel external entity

Installation event

number, type thing

master password thing

telephone number thing

sensor event event

audible alarm external entity

delay time thing

monitoring service external entity

Recap: Identifying Classes

6 selection characteristics

1. Retained information

2. Needed services

3. Multiple attributes

4. Common attributes

5. Common operations

6. Essential requirements

15EECS 448 Software Engineering

Potential Class Type

homeowner role

system thing

sensor external entity

control panel external entity

Installation event

number, type thing

master password thing

telephone number thing

sensor event event

audible alarm external entity

delay time thing

monitoring service external entity

Class Selection	Characteristics

16EECS 448 Software Engineering

Potential Class Type

homeowner role

system thing

sensor external entity

control panel external entity

Installation event

number, type thing

master password thing

telephone number thing

sensor event event

audible alarm external entity

delay time thing

monitoring service external entity

Class Selection	Characteristics

No Does not retain info

Yes All 6 apply

Yes All 6 apply

Yes All 6 apply

No None applies

No Attributes of sensor class

No Does not have multiple attributes

No Does	not	have	multiple	attributes
Yes All 6 apply

Yes All 6 apply

No Attribute of system class

No So far it does not need service

Analyzing Class Elements (1/2)

• Consider more fine-grained element types
• Roles and external entities (actors)

• Roles played by people who interact with the system
• External entities that produce or consume information

• Organizational units that are relevant to an application
• e.g., team, group, division

• Structures
• Define a class of objects or related classes of objects

e.g., sensors, computers, four-wheeled vehicles

Analyzing Class Elements (2/2)

• Consider more fine-grained element types
• Things

• Part of the information domain for the problem
• e.g., reports, displays, letters, signals

• Occurrences
• Events occur within the context of system operation

• Places
• The context of the problem and the overall function

Case Study: Safe Home

• Let’s look at the system class
• Alarm response information

• delayTime, telephoneNumber

• Activation/deactivation
• masterPassword
• number of tries
• temporary password

• Identification
• system ID, status

19EECS 448 Software Engineering

System
delayTime

telephoneNumber
masterPassword

Case Study: Safe Home

• Let’s look at the system class
• Alarm response information

• delayTime, telephoneNumber

• Activation/deactivation
• masterPassword
• number of tries
• temporary password

• Identification
• system ID, status

20EECS 448 Software Engineering

System
systemID

systemStatus
delayTime

telephoneNumber
masterPassword
tempPassword
numberTries

Case Study: Safe Home

During installation, the SafeHome PC is used to
program and configure the system. Each sensor is
assigned a number and type, a master password is
programmed for arming and disarming the system,
and telephone number(s) are input for dialing when a
sensor event occurs.

21EECS 448 Software Engineering

System
systemID

systemStatus
delayTime

telephoneNumber
masterPassword
tempPassword
numberTries

Case Study: Safe Home

During installation, the SafeHome PC is used to
program and configure the system. Each sensor is
assigned a number and type, a master password is
programmed for arming and disarming the system,
and telephone number(s) are input for dialing when a
sensor event occurs.

• Display() typically should exist too.

• Divide operations into sub-operations if needed
• e.g., program()

22EECS 448 Software Engineering

System
systemID

systemStatus
delayTime

telephoneNumber
masterPassword
tempPassword
numberTries

program()
arm()

disarm()
display()

Class-Responsibility-Collaborator Modeling

•CRC model:

• Used to identify and organize classes

• Originally introduced as a technique for teaching object-

oriented concepts

• Use a collection of (actual or virtual) index cards

representing classes

23EECS 448 Software Engineering

CRC Modeling

• A CRC model - index cards represent classes

24EECS 448 Software Engineering

Anything the class
knows (attributes) or
does (operations)

Classes required to
provide info needed to

complete a responsibility

Class:
Description:

Responsibility: Collaborator:

Class:
Description:

Responsibility: Collaborator:

Class:
Description:

Responsibility: Collaborator:

Class: FloorPlan
Description:

Responsibility: Collaborator:

incorporates walls, doors and windows
shows position of video cameras

defines floor plan name/type
manages floor plan positioning
scales floor plan for display

Wall
Camera

CRC Modeling

EECS 448 Software Engineering 25

Classes
• Entity classes
• Extracted directly from the statement of the problem
• Represent things to be stored or persist throughout the development

• Boundary classes
• Create/display interface
• Mange how to represent entity objects to users

• Controller classes
• Create/update entity objects
• Initiate boundary objects
• Control communications
• Validate data exchanged

26EECS 448 Software Engineering

Responsibilities (1/3)

• System intelligence should be distributed across classes
• Intelligence: what the system knows and what the system can do
• How to distribute across classes?
• Distributed more evenly to enhance maintainability: avoid extra long list

• Each responsibility should be stated as generally as possible
• Responsibility reside high in the class hierarchy
• Can be applied to subclasses

27EECS 448 Software Engineering

Responsibilities (2/3)

• Information and the behavior related to a responsibility should reside
within the same class
• Achieves encapsulation

• Information about one thing should be localized with a single class, not
distributed across multiple classes
• Avoid spreading across classes
• Encapsulation is good in testing and maintenance

28EECS 448 Software Engineering

Responsibilities (3/3)

• Responsibilities should be shared among related classes,
when appropriate
• When some related objects need to exhibit the same behavior at

the same time
e.g., Play, PlayerHead, PlayerBody classes in video game: update()
and display()

29EECS 448 Software Engineering

Collaborations

• A class may collaborate with other classes to fulfill responsibilities
• If a class cannot fulfill every single responsibility itself, it must interact with

another class
• Collaboration refers to identifying relationships between classes
• is-part-of relationship

• Aggregation
• has-knowledge-of relationship: one class must acquire information from

another class
• Association

• depends-upon relationship: dependency other than the above two

30EECS 448 Software Engineering

Relationships between Classes

31EECS 448 Software Engineering

Player

PlayerHead PlayerArms PlayerLegsPlayerBody

WallSegment Window Door

Wall

is used to buildis used to build

is used to build1..*

1 1 1

0..* 0..*

CameraDisplayWindow

{password}

<<access>>

composition association

dependency

Class Diagram
FloorPlan

type
name
outsideDimensions
determineType()
positionFloorplan()
scale()
changColor()

Camera

type
ID
location
fieldView
panAngle
zoomSetting

determineType()
translateLocation()
displayID()
displayView()
displayZoom()

Is placed within

Wall

type
wallDimensions

determineType()
computeDimensions()

Is part of

WallSegment

type
startCoordinates
stopCoordinates
nextWallSegment
determineType()
draw()

Is used
to build

Window

type
startCoordinates
stopCoordinates
nextWindow
determineType()
draw()

Door

type
startCoordinates
stopCoordinates
nextDoor
determineType()
draw()

Is used to build Is used to build

EECS 448 Software Engineering 32

Validating a Class Diagram

• One of the most important, and often overlooked issues is how to
validate a class diagram.

• Given a specification or a use-case, can you look at the class diagram
and use features of it to manually “execute” the use case?

Coming up: Questions

Reviewing a CRC Model

• Stakeholders review the CRC model once it is developed
• All participants are given a subset of CRC index cards

• No reviewer should have two cards that collaborate
• Organize all use-case scenarios into categories

• Review leader reads the use case
• When it comes to an object, pass a token to the person holding the corresponding

class index card
• Check the responsibility on this index card, find the collaborator
• Pass the token to the person with the collaborator index card
• Describe the responsibilities on the card
• The entire group checks the responsibilities
• If cannot accommodate the use case, make modifications

34EECS 448 Software Engineering

• An object-oriented modeling language developed in 1997

• Models structure (static) and behavioral (dynamic) aspects of a system

• Semi-formal: UML 2.0 added much more formality

• Process-independent: can be used with a variety software

development process models

• Customizable and extensible

35EECS 448 Software Engineering

UML Class Modeling

Abstraction Levels

• Three perspectives for class models
• Analysis
• Represents concepts in the domain
• Drawn with no regard for implementation (language independent)

• Specification
• Focus on interfaces not on how implementation is broken into classes

• Implementation
• A blue-print for coding
• Direct code implementation of each class in the diagram

36EECS 448 Software Engineering

37EECS 448 Software Engineering

Student

{Joe, Sue, Mary,
Frank, Tim, …}

Student
name

major

GPA

standing

interests

-- The set of students

known to the registration

system

Analysis
:Student

name: String

major: String

GPA: real

standing: Scode

add(Course)

drop(Course)

-- Software representation of students;

support registration in courses

Specification

Student
-major: String

-GPA: Real

-standing: String

+add(Course)

+drop(Course)

-- Handle a registration in

courses

CourseList

-- Display a dynamic list

courses

1

0..1

Implementation

Student Records Management System

Classes in UML Diagrams

• An abstraction which describes a collection of objects sharing some
commonalties
• Syntax
• Name: noun, singular

• centered, bold, first letter capitalized

• Attribute
• left justified, lower cases

• Operations
• Visibility

+ public
- private
protected

38EECS 448 Software Engineering

Attributes

• An attribute can be defined for individual objects or a class of objects
• Static: if defined for a class, every object in the class has that attribute
(place holder)

• An attribute relates an object to some other object

39EECS 448 Software Engineering

joe: Student

name: String = “Joe Jones”

joe: Student Joe Jones : String
name

1

Objects

• Object is an instance of a class

• Fundamental building blocks of object-oriented systems

• Instance name and class path are separated by a “:”

• Operation syntax:

name (params) : return type

• An instance may have some value

• Instance orderPaid of the Date class has

the value July 31, 2011 3:00 pm

40EECS 448 Software Engineering

joe: Student

major: String = “CS”

gpa: Real = 4.0

standing: String = “”

add(Class Section)

drop(Class Section)

Type of Relationships in Class Diagrams

• Class diagrams show relationships between classes.

41EECS 448 Software Engineering

Relation

AssociationGeneralization Dependency

Aggregation

Binary Association N-ary Association

Associations
• An association is a structural relationship that specifies a connection

between classes
• Classes A and B are associated if:
• An object of class A sends a message to an object of B
• An object of class A creates an instance of class B
• An object of class A has an attribute of type B or collections of objects of type B
• An object of class A receives a message with an argument that is an instance of

B (maybe…)
• Depends whether it “uses” that argument

42EECS 448 Software Engineering

Associations

• Associations
• Links are instances of associations
• Association names are typically verb phrases (in lower case)
• The name should include an arrow indicating the direction in

which the name should be read
• Often interaction diagrams are useful for modeling objects

43EECS 448 Software Engineering

Associations

• A solid line connecting two classes

44EECS 448 Software Engineering

Student

Class
Section

Course

Semester

Instructor

Department

takes>

is registered for>

teaches>

sponsors><w
or

ks
 fo

r is instance of>

is h
eld

 durin
g>

N-ary Associations

• Associations can connect more than one class

45EECS 448 Software Engineering

Student Advisor

Major

Multiplicity

• How many objects from two classes are linked?
• An exact number: indicated by the number
• A range: two dots between a pair of numbers
• An arbitrary number: indicated by * symbol
• (Rare) A comma-separated list of ranges

• e.g., 1 1..2 0..* 1..* * (same as 0..*)
• Implementing associations depends on multiplicity

46EECS 448 Software Engineering

Multiplicity

47EECS 448 Software Engineering

Student

Class
Section

Course

Semester

Instructor

Department

takes>

is registered for>

teaches>

sponsors><w
or

ks
 fo

r is instance of>

is h
eld

 durin
g>

1..*
1

1..*

1..*1
1

1..*

0..8

0..*

0..61..3

Generalization

• Generalization is an association between classes
• A subclass is connected to a superclass by an arrow

with a solid line with a hollow arrowhead.

• From an analysis perspective, it represents
generalization/specialization:
• Specialization is a subset of the generalization

48EECS 448 Software Engineering

Student

Person

Graduate
Student

Generalization

Specialization

Generalization

• Generalization represents implementation inheritance
• You model “inheritance” early, but not implement it at the conceptual level

49EECS 448 Software Engineering

Student
major: String
GPA: Real
standing: String

add(Class Section)
drop(Class Section)

Person

name: String
address: String

changeAddress(new_address)

Aggregation

• Aggregation: is a special kind of association that means “part of”
• Aggregations should focus on a single type of composition (physical,

organization, etc.)

Coming up: Composition (very similar to aggregation)

1 1

*

4..*

1

1

1 1

1..3 1

0..9 1

Pizza Order

Slice

Crust

Sauce Serving

Cheese Serving

Topping Serving

Composition

• Very similar to aggregation:
• Think of composition as a stronger form of aggregation
• Composition means something is a part of the whole, but cannot

survive on it’s own

Coming up: Using a class diagram

BuildingRoom

Dependencies
• A using relationship
• A change in the specification of one class may affect the other
• But not necessarily the reverse

Coming up: Dependencies

Student

add(Course)
drop(Course)

Prerequisite

Properties/Stereotypes

• Extends the “vocabulary” of UML
• Syntax: <<property/stereotype>>

• UML predefines many:
• Classes: <<interface>>, <<type>>, <<implementationClass>>,

<<enumeration>>, <<thread>>
• Constraints: <<precondition>>
• Dependencies: <<friend>>, <<use>>
• Comments: <<requirement>>, <<responsibility>>
• Packages: <<system>>, <<subsystem>> (maybe classes, too)
• Or, create your own if needed

53EECS 448 Software Engineering

Analysis Packages

Environment
+Tree
+Landscape
+Road
+Wall
+Bridge
+Building
+VisualEffect
+Scene

RulesOfTheGame
+RulesOfMovement
+ConstraintsOnAction

Characters
+Player
+Protagonist
+Antagonist
+SupportingRole

Package name

+ public

– hidden

accessible only to a
given package

EECS 448 Software Engineering 54

Revisit Class Diagrams

• Class diagrams are like the paragraphs of a technical paper
• Each diagram should focus on a specific topic
• A diagram provides supporting details for the main concept that is

trying to communicate
• The level of the abstraction used in the diagrams should be consistent

• Together, all the diagrams for a system comprise a “model” of
that system

Coming up: Class Diagrams

Class Diagrams

• Pitfalls of Class Diagrams
• Using class diagrams alone can cause developers to focus

too much on structure and ignore behavior
• Using the wrong (or a mixed) perspective can lead to

misunderstanding
• Using the wrong level of abstraction can be confusing to the

target audience
• Using mixed levels of abstraction can reduce the usefulness

of diagram
Coming up: Multiplicity Constraints

Example

• University Courses
• Some instructors are professors, while others have job title adjunct
• Departments offer many courses, but a course may be offered by

more than 1 department
• Courses are taught by instructors, who may teach up to three courses
• Instructors are assigned to one (or more) departments
• One instructor also serves a department chair

57EECS 448 Software Engineering

Class Diagram

58EECS 448 Software Engineering

Another Example

• Problem Reporting Tool: a CASE tool for storing and tracking
problem reports
• Employees are assigned to a project
• A manager may add new artifacts and assign problem reports to developers
• Each report contains a problem description and a status
• Each problem can be assigned to someone
• Problem reports are made in one of the “artifacts” of a project

59EECS 448 Software Engineering

Class Diagram

60EECS 448 Software Engineering

Employee

+name : string

Manager Developer

Project

+name : string

Artifact

+name : string
+status : enum

Problem Report

History Entry

-when : Date
-whatDone : string

Code Bug Report

1

0..n

Responsible For

0..*

1

1

0..n

About

0..n

1

History Log

1..*

0..*
Assigned To

1 0..*
Managed By

References

• Prof. Fengjun Li’s EECS 448 Fall 2015 slides

• This slide set has been extracted and updated from the slides
designed to accompany Software Engineering: A Practitioner’s
Approach, 8/e (McGraw-Hill 2014) by Roger Pressman

61

