
Project 3 Scope and Evaluations

• Scope proposed by teams in Project 3 is OK
(notes will be available in the observations that
accompany your Project 3 grade)

• Submit your Project 3 evaluations via Blackboard
(if you haven’t already done so)

Software Quality and Metrics
Prof. Alex Bardas

What is Software Quality?

User Satisfaction = compliant product + good quality

+ delivery within budget and schedule

• Software quality can be described from different points of views
• Transcendental view
• User’s view: requirements
• Manufacturer’s view: specifications
• Product view: functions
• Value-based view

3EECS 448 Software Engineering

What is Software Quality?

• Quality of design
• How the design of the system meets the specifications in the requirements model

• Quality of conformance
• How the implementation follows the design so that the system meets the

requirements

Software with a high technical quality can evolve with low cost and risk to
keep meeting functional and non-functional requirements.

4EECS 448 Software Engineering

What are the “implicit requirements”

• Software quality factors
• A non-functional requirement for a software program which is not called up

by the customer's contract, but nevertheless is a desirable requirement which
enhances the quality of the software program.

• The factors are NOT binary
• Evaluate the degree to which the software demonstrate a factor

5EECS 448 Software Engineering

Quality Factors

• Dimensions of quality [Garvin’87]
• Performance
• Feature
• Reliability
• Conformance
• Durability
• Serviceability
• Aesthetics
• Perception

6EECS 448 Software Engineering

Quality factors [McCall’78]

Product
Operation

Product
Revision

Product
Transition

Maintainability
Flexibility
Testability

Portability
Reusability
Interoperability

Correctness
Reliability
Efficiency

Usability
Integrity

soft, subjective, but solid indication

ISO 9126 Quality Factors

7EECS 448 Software Engineering

suitability, accuracy, interoperability,
compliance, security

Function-
ality

Reliability

Usability

Efficiency

Maintain-
ability

Portability

maturity, fault
tolerance,
recoverability

understandability,
learnability,
operability

time, resource

stability,
changeability,

testability

adaptability,
installability,

conformance,
replaceability

ISO 9126 Quality Factors

• Leads to software metrics for quantitative assessments
• e.g., 16 external quality measures and 9 internal quality measures for maintainability

8EECS 448 Software Engineering

• “activity recording” (analysability)
• ratio between actual and required # of data items

• “change impact” (changeability)
• # of modifications and problems introduced

• “re-test efficiency” (testability)
• time spent to correct a deficiency

• “change implementation elapse time” (changeability)
• time between diagnosis and correction

Quality Dilemma

• “Good Enough” software
• Deliver software with known bugs and incomplete features

• Cost of quality
• Costs too much time and money to get to the expected quality level
• Prevention costs: quality planning, adding formal technical activities, test

planning, training
• Appraisal costs: technical review, data collection & evaluation, testing
• Failure costs: internal failure costs (repair, rework, failure analysis) and

external failure costs (help line support, complaint resolution, product return
and replacement, warranty)

9EECS 448 Software Engineering

Cost of Quality
• Prevention costs

• Quality planning and coordination
• Adding formal technical reviews, planning test
• Training

• Appraisal costs
• Process inspection, technical review, data collection, etc.
• Testing and debugging

• Failure costs
• Internal failure costs: rework, repair, failure mode analysis before shipment
• External failure costs: complaint resolution, product return and replacement, help

line support, warranty work after delivery
10EECS 448 Software Engineering

Cost of Fixing Critical Defects
[Cigital, “Case Study: Finding Defects Earlier Yields Enormous Savings”]

Identifying the critical bugs earlier in the lifecycle reduced costs by $2.3M

11EECS 448 Software Engineering

Software Metrics

• Measures: quantitative indication of product attributes
• About its extent, amount, dimension, capacity, or size

e.g., # of errors in a software unit

• Metrics: quantitative measure of the degree to which a system possess
a given attribute
• Relates individual measures e.g., avg. # of errors per unit test

12EECS 448 Software Engineering

measure 1
measure 2

…
measure n

metrics
indicator

a single or a
combination
of metrics

Why Measure Software?

• To improve software quality
• To estimate development time and budget
•Measurement guidelines
• Data collection and analysis should be automated
• Apply valid statistical techniques to establish relationships
between internal attributes and external quality characteristics
• For each metric, establish interpretative guidelines and
recommendations

13

Use Case-Oriented Metrics

• Use Case Points (UCP)
• A size and effort metric
• Pros: defined earlier, user visible, language independent
• Cons: no standard size, subjective estimation

• A function of:
• Size of functional features (“unadjusted” UCPs)
• Non-functional factors
• TCF: technical complexity factors

• Environmental complexity factors (ECF)

14EECS 448 Software Engineering

Use Case-Oriented Metrics

• Actor Classification and Weights

15EECS 448 Software Engineering

Actor type Description of how to recognize the actor type Weight

Simple The actor is another system which interacts with our system
through a defined API. 1

Average
The actor is a person interacting through a text-based user
interface, or another system interacting through a protocol,
such as a network communication protocol.

2

Complex The actor is a person interacting via a graphical user interface. 3

Use Case-Oriented Metrics
Example: Safe Home Access (SHA)
• Unadjusted Actor Weight (UAW)

UAW(SHA) = 5 ´ Simple + 2 ´ Average + 1 ´ Complex = 5´1 + 2´2 + 1´3 = 12

16EECS 448 Software Engineering

Actor name Description of relevant characteristics Complexity Weight

Landlord Landlord is interacting with the system via a graphical user interface (when managing
users on the central computer). Complex 3

Tenant
Tenant is interacting through a text-based user interface (assuming that identification is
through a keypad; for biometrics based identification methods Tenant would be a
complex actor).

Average 2

LockDevice LockDevice is another system which interacts with our system through a defined API. Simple 1

LightSwitch Same as LockDevice. Simple 1

AlarmBell Same as LockDevice. Simple 1

Database Database is another system interacting through a protocol. Average 2

Timer Same as LockDevice. Simple 1

Police Our system just sends a text notification to Police. Simple 1

Use Case-Oriented Metrics
• Unadjusted Use Case Weights (UUCW)
• Determine based on the number of transactions

17EECS 448 Software Engineering

Use case
category Description of how to recognize use case category Weight

Simple

Simple user interface.
Up to one participating actor (plus initiating actor).
Number of steps for the success scenario: £ 3.
If presently available, its domain model includes £ 3 concepts.

5

Average

Moderate interface design.
Two or more participating actors.
Number of steps for the success scenario: 4 to 7.
If presently available, its domain model includes between 5 and 10 concepts.

10

Complex

Complex user interface or processing.
Three or more participating actors.
Number of steps for the success scenario: ³ 7.
If available, its domain model includes ³ 10 concepts.

15

Use Case-Oriented Metrics
UUCW(SHA) = 1 ´ Simple + 5 ´ Average + 2 ´ Complex = 1´5 + 5´10 + 2´15 = 85

18EECS 448 Software Engineering

Use case Description Category Weight

Unlock (UC-1) Simple user interface. 5 steps for the main success scenario. 3 participating actors (LockDevice,
LightSwitch, and Timer). Average 10

Lock (UC-2) Simple user interface. 2+3=5 steps for the all scenarios. 3 participating actors (LockDevice,
LightSwitch, and Timer). Average 10

ManageUsers (UC-3) Complex user interface. More than 7 steps for the main success scenario (when counting UC-6 or
UC-7). Two participating actors (Tenant, Database). Complex 15

ViewAccessHistory
(UC-4)

Complex user interface. 8 steps for the main success scenario. 2 participating actors (Database,
Landlord). Complex 15

AuthenticateUser
(UC-5)

Simple user interface. 3+1=4 steps for all scenarios.
2 participating actors (AlarmBell, Police). Average 10

AddUser (UC-6) Complex user interface. 6 steps for the main success scenario (not counting UC-3). Two
participating actors (Tenant, Database). Average 10

RemoveUser (UC-7) Complex user interface. 4 steps for the main success scenario (not counting UC-3). One
participating actor (Database). Average 10

Login (UC-8) Simple user interface. 2 steps for the main success scenario. No participating actors. Simple 5

Use Case-Oriented Metrics
• Technical Complexity Factors (TCFs)

19EECS 448 Software Engineering

Technical factor Description Weight
T1 Distributed system (running on multiple machines) 2
T2 Performance objectives (are response time and throughput performance critical?) 1
T3 End-user efficiency 1
T4 Complex internal processing 1
T5 Reusable design or code 1
T6 Easy to install (are automated conversion and installation included in the system?) 0.5
T7 Easy to use (including operations such as backup, startup, and recovery) 0.5
T8 Portable 2
T9 Easy to change (to add new features or modify existing ones) 1
T10 Concurrent use (by multiple users) 1
T11 Special security features 1

T12 Provides direct access for third parties (the system will be used from multiple sites
in different organizations) 1

T13 Special user training facilities are required 1

Use Case-Oriented Metrics

• Technical Complexity Factors (TCFs)
• For each of the 13 factors, assign a perceived complexity factor (!"), whose

value is between 0 and 5
• Technical factor is irrelevant (0), average (3), or influential (5)

• Assume overall TCF impacts UCP from a range of 0.6 to 1.3
• 0.6 if all perceived complexity are 0

• 1.3 if all 5

So, the impact is modeled as:

TCF = Constant-1 + Constant-2 ´ Technical Total Factor = #$ + #& ∑"($$) *"!"

20EECS 448 Software Engineering

Constant-1 (C1) = 0.6
Constant-2 (C2) = 0.01

Use Case-Oriented Metrics

21

Technical
factor Description Weight Perceived

Complexity

Calculated Factor
(Weight´Perceived
Complexity)

T1 Distributed, Web-based system 2 3 2´3 = 6

T2 Users expect good performance but nothing exceptional 1 3 1´3 = 3

T3 End-user expects efficiency but there are no exceptional demands 1 3 1´3 = 3

T4 Internal processing is relatively simple 1 1 1´1 = 1

T5 No requirement for reusability 1 0 1´0 = 0

T6 Ease of install is moderately important (will probably be installed by technician) 0.5 3 0.5´3 = 1.5

T7 Ease of use is very important 0.5 5 0.5´5 = 2.5

T8 No portability concerns beyond a desire to keep database vendor options open 2 2 2´2 = 4

T9 Easy to change minimally required 1 1 1´1 = 1

T10 Concurrent use is required 1 4 1´4 = 4

T11 Security is a significant concern 1 5 1´5 = 5

T12 No direct access for third parties 1 0 1´0 = 0

T13 No unique training needs 1 0 1´0 = 0

Technical Total Factor: 31

TCF = 0.6 + 0.01 * 31 = 0.91

Use Case-Oriented Metrics

• Environmental Complexity Factors (ECFs)
• Team determines each factor’s perceived impact of the factor based on its experiences
• No impact (0), strong negative (1), average (3), or strong positive (5)

22EECS 448 Software Engineering

Environmental factor Description Weight
E1 Familiar with the development process (e.g., UML-based) 1.5
E2 Application problem experience 0.5
E3 Paradigm experience (e.g., object-oriented approach) 1
E4 Analyst capability 0.5
E5 Motivation 1
E6 Stable requirements 2
E7 Part-time worker -1
E8 Difficult programming language -1

Use Case-Oriented Metrics

• Environmental Complexity Factors (ECFs)
• Larger ECF should have a greater impact on UCP

• Suggest ECF has on the UCP equation from 0.425 to 1.4
• 0.425 (Part-Time Workers and Difficult Programming Language = 0, all other values = 5)

• 1.4 (perceived impact all 0)

ECF = Constant-1 + Constant-2 ´ Environment Total Factor = !" + !$ ∑&'"()&*&

23EECS 448 Software Engineering

Constant-1 (C1) = 1.4
Constant-2 (C2) = -0.03

Use Case-Oriented Metrics

24EECS 448 Software Engineering

Environmental
factor Description Weight Perceived

Impact

Calculated Factor
(Weight´ Perceived
Impact)

E1 Beginner familiarity with the UML-based development 1.5 1 1.5´1 = 1.5

E2 Some familiarity with application problem 0.5 2 0.5´2 = 1

E3 Some knowledge of object-oriented approach 1 2 1´2 = 2

E4 Beginner lead analyst 0.5 1 0.5´1 = 0.5

E5 Highly motivated, but some team members occasionally
slacking 1 4 1´4 = 4

E6 Stable requirements expected 2 5 2´5 = 5

E7 No part-time staff will be involved -1 0 -1´0 = 0

E8 Programming language of average difficulty will be used -1 3 -1´3 = -3

Environmental Total Factor: 11

ECF = 1.4 - 0.03 * 11 = 1.07

Use Case-Oriented Metrics

• Calculate the Use Case Points: UCP = (UUCW + UAW) ´ TCF ´ ECF
• UAW + UUCW = 12 + 85 = 97
• TCF = 0.91
• ECF = 1.07

UCP = 97 ´ 0.91 ´ 1.07 = 94.45 à 94 use case points

• For this case study, the TCF and ECF reduced the (UUCW + UAW)
by approximately 3 percent (94/97*100)

25EECS 448 Software Engineering

Use Case-Oriented Metrics

• How to use UCP?
• The UCP value by itself is not very useful
• To estimate the effort (time) of the project, we need another factor

• Productivity Factor (PF)
• The ratio of development man-hours needed per use case point

Total estimated number of hours = UCP * PF

• Use statistics from past projects
• If no historical data,

• Count previous components to establish a baseline
• Use a value between 15 and 30 based on team’s past experience

26EECS 448 Software Engineering

Function-Oriented Metrics

• Function Points (FP)
• Most widely used
• Measure functionality of a system from users’ point of view
• What users request and receive in return

• Build an empirical relationship between direct measures of
software information domain and complexity assessments

• Pros: Based on data known early, language independent
• Cons: Still subjective

27EECS 448 Software Engineering

Function-Oriented Metrics

• Function Points (FP)
• Information domain values:
• # of internal logical files (ILF)
• # of external inputs (EI)

• Often updates ILF
• # of external inquiries (EQ)

• Inputs resulting in some response
• # of external outputs (EO)

• Screens, reports, or error messages
• # of external interface files (EIF)

28EECS 448 Software Engineering

Function-Oriented Metrics
• Computing FP
• Count # of FP in each information domain category
• Assign a weight factor to each category
• Calculate the Count Total=∑"#$% #"×("

29EECS 448 Software Engineering

External Inputs (EIs)

External Outputs (EOs)

External Inquiries (EQs)

Internal Logic Files (ILFs)

External Interface Files (EIFs)

Information Domain Value

3

4

3

7

5

Count
Weighting Factor

Simple Avg. Complex

4

5

4

10

7

6

7

6

15

10

=

=

=

=

=
Count Total

X

X

X

X

X

Function-Oriented Metrics

• Value Adjustment Factors (VAF)
• General system characteristics
• 14 factors (!")
• Assign weights from 0 (not

important) to 5 (essential)

30EECS 448 Software Engineering

Function-Oriented Metrics

• Scaling Factor (derived empirically): !" = 0.65; !) = 0.01
FP = Count Total ×[-.+-0×∑23..4 52]

• The entire process for counting FP:

31EECS 448 Software Engineering

Size-Oriented Metrics

• Size-Oriented Metrics
• Normalize quality by lines of code (LOC)

• Widely used as a quality/productivity measure
• In the 70s or 80s, IBM paid people per line-of-code

32EECS 448 Software Engineering

± Errors per KLOC (thousand lines of code)
± Defects per KLOC
± $ per LOC
± Page of documentation per KLOC

° Errors per person-month
° LOC per person-month
° $ per page of documentation

Size-Oriented Metrics

• LOC is dangerous (cons)
• Penalize well-designed but short programs
• Programming language-dependent

33EECS 448 Software Engineering

Programming LOC per Function point
Language avg. median low high

Ada 154 - 104 205
Assembler 337 315 91 694
C 162 109 33 704
C++ 66 53 29 178
COBOL 77 77 14 400
Java 63 53 77 -
JavaScript 58 63 42 75
Perl 60 - - -
PL/1 78 67 22 263
Powerbuilder 32 31 11 105
SAS 40 41 33 49
Smalltalk 26 19 10 55
SQL 40 37 7 110
Visual Basic 47 42 16 158

Specification-Based Quality Metrics

• Assess the quality of requirement specifications
• Specificity
• Completeness
• Correctness, understandability, verifiability, internal and external

consistency, achievability, concision, traceability, modifiability,
precision, and reusability

• Each can be quantified using one or more metrics

34EECS 448 Software Engineering

Specification-Based Quality Metrics
• Assume there are !" requirements in a specification: !" = !$ + !&$

• !$ and !&$ are the # of functional and non-functional requirements

• Specificity = &'(&)
• !*+ is the # of requirements for which all reviewers have identical interpretations

• Completeness of functional requirements = &'
&(×&-

• !* is the # of unique functional requirements
• !+ is the # of inputs
• !. is the # of states specified
• Measures the percentage of necessary functions that have been specified

35EECS 448 Software Engineering

Design Metrics

• Various metrics have been derived to measure the complexity of design
• Architectural Design
• Consider architectural modules/components
• Not consider the inner workings of each model/component

e.g., in a hierarchical architecture:
• fan-in: # of modules that invoke P
• fan-out: # of modules immediately subordinate P

36EECS 448 Software Engineering

Module, P

Design Metrics

• Henry-Kafura (HK) metric
• “Structural complexity”
• Measure interactions between modules
• Cp=[fin(P) × fout(P)]2

• Later modified to include internal complexity
• HCp= Cip × [fin(P) × fout(P)]2

• Cip is any code metric for internal complexity
e.g., LOC as length(P)

37EECS 448 Software Engineering

(3 * 1)2 = 9

Module, P

Design Metrics

• A higher-level complexity measure
• Structural complexity
• S(i) = (fout(i))2

• Data complexity
• D(i) = v(i) / [fout(i) + 1]
• v(i) is the number of inputs and outputs passed to and from i

• System complexity
• C(i) = S(i) + D(i)

38EECS 448 Software Engineering

Design Metrics

• Component-Level Metrics (coding metrics)
• Cyclomatic Complexity: developed by Thomas McCabe (1974)

• # of linearly independent paths through the code

• Measures the complexity of a program’s conditional logic
• High V(G) leads to high error probability: should be less than 10

• Count the number of decisions in the program

• Cyclomatic complexity of graph G = #edges - #nodes + 2

V(G) = e – n + 2

• Cyclomatic complexity of graph G = #binary decisions + 1

V(G) = p + 1

39EECS 448 Software Engineering

Design Metrics

40EECS 448 Software Engineering

if expression1 then
statement2

else
statement3

end if
statement4

switch expr1
case 1:

statement2
case 2:

statm3
case 3:

statm4
end switch
statm5

(a)

(b)

do
statement1

while expr2
end do
statement3

(c)

CODE FLOWCHART GRAPH

T Fexpr1
?

statm4

statm2 statm3

2

1 3expr1
?

statm5

statm3statm2 statm4

n1

n2 n3

n4

n1

n2 n4

n5

n3

T

F

expr2
?

statm3

statm1 n1

n2

n3

Convert code to graph

1 binary
decisions

2 binary
decisions

1 binary
decisions

Design Metrics

• Cyclomatic Complexity example
• V(G) = e - n + 2 = 9 – 7 + 2 = 4
• V(G) = p + 1 = 3 + 1 = 4
• Basis path set:

• {1, 7}
• {1, 2, 6, 1, 7}
• {1, 2, 3, 4, 5, 2, 6, 1, 7}
• {1, 2, 3, 5, 2, 6, 1, 7}

41EECS 448 Software Engineering

1

3

54

6

7

2

Design Metrics
• Component-Level Metrics

• Measure module cohesion

6 - Functional cohesion

module performs a single well-defined function

5 - Sequential cohesion

>1 function, but they occur in an order prescribed by the specification

4 - Communication cohesion

>1 function, but on the same data (not a single data structure or class)

3 - Procedural cohesion

multiple functions that are procedurally related

2 - Temporal cohesion

>1 function, but must occur within the same time span (e.g., initialization)

1 - Logical cohesion

module performs a series of similar functions, e.g., Java class java.lang.Math

0 - Coincidental cohesion

42EECS 448 Software Engineering

high cohesion

low cohesion

Design Metrics

• Cohesion measure depends on subjective human assessment
• Most cohesion metrics focus on syntactic cohesion
• LCOM: lack of cohesion in method
• Count the # of pairs of methods that do not share class attributes
• Consider a class C has

• A set of methods: Mi, i=1…m
• A set of attributes: Aj, j=1…a

• LCOM(C)=
!"($% ∑$

% '()
!"*

• LCOM is included in the Chidamber & Kemerer object-oriented metrics suite

43EECS 448 Software Engineering

Design Metrics
• Component-Level Metrics
• Measure module coupling: # of input/output parameters, global variables,

and modules called
• Data and control flow coupling

• di = # of input data parameters
• ci = # of input control parameters
• do = # of output data parameters
• co = # of output control parameters

• Global coupling
• gd = # of global variables used as data
• gc = # of global variables used as control

44EECS 448 Software Engineering

Design Metrics

• Component-Level Metrics
• Environmental coupling
• w = # of modules called (fan in)
• r = # of modules calling (fan out)

• Coupling metric mc = !"
• # = %& + (×*& + %+ + ,×*+ + -. + *×-/ + 0 + 1
• k is a propor;onality constant (k =1)
• (= , = * = 2

45EECS 448 Software Engineering

Design Metrics

•Metrics for User Interface Design
• Layout appropriateness (LA): consider layout entities
• Absolute and relative position of layout entity
• Frequency of using an entity
• Transition cost from one entity to another

cost = sum[frequency of transition(k) x cost of transition(k)]

• Find an optimal layout,

LA = 100×[cost of LA-optimal layout/cost of proposed layout]

EECS 448 Software Engineering 46

References

• Prof. Fengjun Li’s EECS 448 Fall 2015 slides

• This slide set has been extracted and updated from the slides
designed to accompany Software Engineering: A Practitioner’s
Approach, 8/e (McGraw-Hill 2014) by Roger Pressman

47

