
Design Engineering
Prof. Alex Bardas

EECS 448 Software Engineering

From Analysis Model to Design

• In previous stages, we focused on obtaining
• Requirements
• An analysis model

• Now, we set the stage for construction
• Choose elements to form alternative design solutions
• Follow design models for architectural, interface, component-level

and data/class design
• An iterative process from a high level of abstraction to lower levels

of abstraction through refinements

2EECS 448 Software Engineering

From Analysis Model to Design

3EECS 448 Software Engineering

interface
design

architectural
design

DESIGN MODEL

component-level
design

data/class design

Analysis Model

Use-cases (text)
Use-case diagrams
Activity diagrams
Swim lane diagrams

Scenario-based
elements

Class-based
elements

Class diagrams
Analysis packages
CRC models
Collaboration diagrams

Behavioral
elements

State diagrams
Sequence diagrams

Quality Attributes

The FURPS Quality Attributes [Hewlett-Packard]

• Functionality: evaluate the feature set, capability of the program, generality
of the functions, and the overall security
• Usability: overall aesthetics, consistency and documentations
• Reliability: accuracy of output, frequency and severity of failure, mean time to

failure, ability to recover and predictability
• Performance: processing speed, response time, resource consumption,

throughput, and efficiency
• Supportability: overall maintainability in terms of extensibility, adaptability,

serviceability, testability, compatibility, configurability

4EECS 448 Software Engineering

Software Quality

• Quality of design should be assessed with technical reviews during
the iterative process
• A good design has three characteristics

1. The design must implement all of the explicit requirements
contained in the requirements model, and it must accommodate
all of the implicit requirements desired by the customer.

5EECS 448 Software Engineering

Software Quality

• Quality of design should be assessed with technical reviews during
the iterative process
• A good design has three characteristics

2. The design must be a readable, understandable guide for those
who generate code and for those who test and subsequently
support the software.

6EECS 448 Software Engineering

Software Quality

• Quality of design should be assessed with technical reviews during
the iterative process
• A good design has three characteristics

3. The design should provide a complete picture of the software,
addressing the data, functional, and behavioral domains from an
implementation perspective.

7EECS 448 Software Engineering

Quality Guidelines

Technical criteria for good design:
• A design should exhibit an architecture that

(1) Is created using recognizable architectural styles or patterns
(2) Is composed of components that exhibit good design characteristics
(3) Can be implemented in an evolutionary fashion

EECS 448 Software Engineering 8

Quality Guidelines

Technical criteria for good design:
• A design should be modular

ØThe software should be logically partitioned into elements or subsystems
• A design should contain distinct representations of data,

architecture, interfaces, and components.
• A design should lead to data structures that are appropriate for

the classes to be implemented and are drawn from recognizable
data patterns.
• A design should lead to components that exhibit independent

functional characteristics.

EECS 448 Software Engineering 9

Quality Guidelines

Technical criteria for good design:
• A design should lead to interfaces that reduce the complexity of

connections between components and with the external environment.

• A design should be derived using a repeatable method that is driven
by information obtained during software requirements analysis.

• A design should be represented using a notation that effectively
communicates its meaning.

EECS 448 Software Engineering 10

Fundamental Design Concepts

• Abstraction—data, procedure, control
• Architecture—the overall structure of the software
• Patterns—“conveys the essence” of a proven design solution
• Separation of concerns—any complex problem can be more easily handled if it is

subdivided into pieces
• Modularity—compartmentalization of data and function
• Information hiding—controlled interfaces
• Functional independence—single-minded function and low coupling
• Refinement—elaboration of detail for all abstractions
• Aspects—a mechanism for understanding how global requirements affect design
• Refactoring—a reorganization technique that simplifies the design
• OO design concepts
• Design Classes—provide design details that will enable analysis classes to be implemented

EECS 448 Software Engineering 11

Fundamental Design Concepts

1. Abstraction
• Problem and solution can be understood at different levels

of abstraction
• Procedural abstraction: a sequence of instructions of a specific and

limited function, with details of the function suppressed
• Data abstraction: a collection of data that describes a data object

• Refinement – a top-down design strategy

12EECS 448 Software Engineering

An abstraction example

• “open the door”

13EECS 448 Software Engineering

door

implemented as a data structure

manufacturer
model number
type
swing direction
inserts
lights

type
number

weight
opening mechanism

open

implemented with a "knowledge" of the
object that is associated with enter

details of enter
algorithm

walk to door;
reach for knob;
open door;
walk through;
close door.

repeat until door opens
turn knob clockwise;
if knob doesn't turn, then

take key out;
find correct key;
insert in lock;

endif
pull/push door
move out of way;
end repeat

Fundamental Design Concepts

2. Architecture
• “The overall structure of the software and the ways in which that

structure provides conceptual integrity for a system. ”
• The structure of modules and data

• Structural properties: components of a system and interactions
• Extra-functional properties: non-functional requirements
• Families of related systems: repeatable patterns that are

commonly encountered in the design of families of similar systems

14EECS 448 Software Engineering

Fundamental Design Concepts

3. Patterns
• A design pattern describes a design structure that solves a
particular design problem within a specific context and amid a
set of forces
• Should provide a description about in case
• The pattern is applicable to the current work
• The pattern can be reused
• The patter can serve as a guide for developing similar but functionally

different patterns

15EECS 448 Software Engineering

Design Pattern Template

16EECS 448 Software Engineering

• Pattern name describes the essence of the pattern
• Intent describes the pattern and what it does
• Also-known-as synonyms for the pattern
• Motivation provides an example of the problem
• Applicability specific design situations in which the pattern is applicable
• Structure classes that are required to implement the pattern
• Participants responsibilities of the classes
• Collaborations how the participants collaborate to carry out their responsibilities
• Consequences describes the “design forces” that affect the pattern and the potential trade-offs
• Related patterns cross-references related design patterns

Fundamental Design Concepts

4. Separation of Concerns
• “Concern”: a feature specified by the requirement model
• A divide-and-conquer strategy
• If solving the combined problem requires more efforts than the sum of

solving two individual problems independently

• Lead to software modularity, functional independence, refinement,
and aspects

17EECS 448 Software Engineering

Fundamental Design Concepts

5. Modularity
• Helps development, increments and changes, testing and debugging, long-

term maintenance
• What is the “right” number and size of the modules?
• As the number of modules
grows, the effort associated
with integration also grows

18EECS 448 Software Engineering

Fundamental Design Concepts

6. Information Hiding
• How to decompose software into modules?
• Define and enforce access constraints

“information within a module is inaccessible to other modules that have no
need for such information”

• So, most data and procedural details are hidden from other modules
• Leads to encapsulation – an attribute of high quality design

19EECS 448 Software Engineering

Fundamental Design Concepts

7. Functional Independence
• Each module addresses a specific subset of requirements
• Each module has a simple interface

20EECS 448 Software Engineering

module

controlled
interface

"secret"

• algorithm

• data structure
• details of external interface
• resource allocation policy

clients

a specific design decision

procedural details and local data
structures

üreduces the likelihood of “side effects”

üdiscourages the use of global data

ülimits the global impact of local
design decisions

üemphasizes communication through
controlled interfaces

Fundamental Design Concepts

7. Functional Independence
• Two criteria: Cohesion and Coupling
• Cohesion is an indication of the relative functional strength

of a module
• A cohesive module performs a single task: requires little interaction

with components in other parts
• Avoid modules that perform many unrelated functions

21EECS 448 Software Engineering

Fundamental Design Concepts

7. Functional Independence
• Two criteria: Cohesion and Coupling
• Coupling is an indication of the relative interdependence

among modules
• Relies on the interface complexity between modules
• Goal: as loose as possible = as independent as possible

22EECS 448 Software Engineering

Great deal of dependence Independent

L Highly coupled Loosely coupled Uncoupled J

Fundamental Design Concepts

8. Refinement
• “Elaboration”
• A top-down design strategy

successively refining levels of
procedural details
• As design progresses, refinement

reveals the low-level details

23EECS 448 Software Engineering

open

walk to door;
reach for knob;
open door;
walk through;
close door.

repeat until door opens
turn knob clockwise;
if knob doesn't turn, then

take key out;
find correct key;
insert in lock;

endif
pull/push door
move out of way;
end repeat

Fundamental Design Concepts

9. Aspects
• “Concerns”: features requirements, data structures, use cases, quality issues,

variants, collaborations, patterns, …
• However, some concerns cannot be easily compartmentalized and span over

the entire system
• A requirement could crosscut another

• An aspect is a cross-cutting concern

24EECS 448 Software Engineering

Aspects - An Example

• Consider two requirements for the SafeHomeAssured.com WebApp
• Requirement A states that a registered user could access videos from

cameras placed throughout a space
• Requirement B is a generic security requirement that states that a

registered user must be validated prior to using SafeHomeAssured
• It’s applicable for all functions that are available to registered users.

• B* cross-cuts A*, where A* and B* are design representations of
concerns

EECS 448 Software Engineering 25

Fundamental Design Concepts

10. Refactoring
• A reorganization technique

• Simplifies the code of a component without changing its function
• “Improves the internal structure of a design (or source code) without changing

its external functionality or behavior” (Chapter 5 – Agile Development)

• In refactoring, examine the existing design for
• Redundancy
• Unused design elements
• Inefficient or unnecessary algorithms
• Poorly constructed or inappropriate data structures
• Any other design failure that can be corrected to yield a better design

26EECS 448 Software Engineering

OO Design Concepts

• message <parameters>
• Stimulate behavior to occur in the receiving object

• inheritance
• All responsibilities of a superclass are immediately inherited by all subclasses

• polymorphism
• Reduces effort required to extend the existing design

EECS 448 Software Engineering 27

Design Classes

• A set of design classes
1. User interface classes
2. Business domain (BD) classes
3. Process classes – lower-level business abstractions required to fully manage

the BD classes
4. Persistent classes – database
5. System classes – management and control functions

• High cohesion & low coupling
• Complete & primitive

EECS 448 Software Engineering 28

From Analysis Classes to Design Classes

EECS 448 Software Engineering 29

refine, simplify

Design model: two dimensions

30EECS 448 Software Engineering

References

• Prof. Fengjun Li’s EECS 448 Fall 2015 slides

• This slide set has been extracted and updated from the slides
designed to accompany Software Engineering: A Practitioner’s
Approach, 8/e (McGraw-Hill 2014) by Roger Pressman

31

