
Midterm Exam

• Answer key and questions are available on the course webpage

• Please let me know if you have questions (come and see me
during the office hours or we can find another time)

• Reminder: Appeals: Should you wish to appeal a grade that you have
received on a laboratory assignment, exam, or anything else, you
must do so within one week of receiving the graded item. (Syllabus)

Project 2 Grades
• Grades will be available on Blackboard this week
• Graders:
• Alex: Presentation, Developments Artifacts, Evaluations (comments)
• Kurt: Modularity, Stability, Documentation, References

• Please let us know if you have questions
• You are NOT allowed to ask another team about the grade they
gave you on the code base (ASK the instructor, he approved
those evaluations)

• Reminder: Appeals: Should you wish to appeal a grade that you have received on a
laboratory assignment, exam, or anything else, you must do so within one week of
receiving the graded item. (Syllabus)

Architectural Design
Prof. Alex Bardas

EECS 448 Software Engineering

Design Model Elements (1/3)

• Data elements
• Data model à structure of data: support component design
• Data model à database architecture: application/business

• Architectural elements
• Overview of the software-to-be
• Information from application domain
• Analysis classes (relationships, collaborations) and flow diagrams are

transformed into design realizations
• Patterns and “styles”

EECS 448 Software Engineering 4

Design Model Elements (2/3)

• Interface elements
• User Interface (UI)
• External Interfaces to other systems, devices,

networks or other producers or consumers of
information
• Internal Interfaces between design

components

esthetic, ergonomic, and technical
considerations

defined in requirements

aligned with component-level design

ControlPanel

LCDdisplay
LEDindicators
keyPadCharacteristics
speaker
wirelessInterface

readKeyStroke()
decodeKey()
displayStatus()
lightLEDs()
sendControlMsg()

Figure 9.6 UML interface representation for Con t ro lP a n e l

KeyPad

readKeystroke()
decodeKey()

<<interface>>

WirelessPDA

KeyPad

MobilePhone

realization

interface

EECS 448 Software Engineering 5

Design Model Elements (3/3)

• Component elements
• Component internal details
• Data objects
• Interface for component operations

• Deployment elements
• Physical allocation, hardware configuration, etc.

SensorManagement
Sensor

Figure 9.8 UML deployment diagram for SafeHome

Personal computer

Security

homeManagement

Surveillance

communication

Control Panel CPI server

Security homeownerAccess

externalAccess

EECS 448 Software Engineering 6

Architectural Design

"four bedrooms, three baths, lots of glass ..."

Customer requirements

architectural design

EECS 448 Software Engineering 7

Hierarchical Organization of Software

• Different views of abstraction

System or product

Subsystems/Modules

Packages

Classes/Objects

Methods

highest abstraction level

lowest level

Product line (or product family)

Source code

EECS 448 Software Engineering 8

Architectural Design

• Architectural design
• The design process for identifying the sub-systems that make up a

system and the framework for sub-system control and communication

• The output of this design process is a description of the
software architecture
• Architectural design should be an early stage of the system

design process

EECS 448 Software Engineering 9

Software Architecture
• Software architecture is a set of high-level decisions that determine

the key components of the system-to-be and their communications
• Main (principal) decisions made throughout the development and evolution

of a software system
• Made early and affect large parts of the system (“design philosophy”) — such

decisions are hard to modify later

Subsystem
for device

control

Subsystem
for

administration

Subsystem
for remote

data access

On embedded
computer

On office
desktop

On tenant’s
smartphone

Safe Home Access System

Decision on software-to-hardware mapping

Decision on system decomposition

EECS 448 Software Engineering 10

Architectural Decisions

• Given the current level of system scope, a decision is “architectural” if
it can be made only by considering the present scope

• It could not be made from a more narrowly-scoped, local perspective

• Architectural decisions should focus on high impact, high priority
areas that are in strong alignment with the business strategy

Product/system A scope Product B scope

Product line scope

Subsystem scope

product or system
architecture
decisions

product line
architecture
decisions systemic impact

local impactClass scope

EECS 448 Software Engineering 11

Why Architecture?

• The architecture is a representation that enables a software
engineer to:
(1) Analyze the effectiveness of the design in meeting its stated

requirements

(2) Consider architectural alternatives at a stage when making design
changes is still relatively easy

(3) Reduce the risks associated with the construction of the software

EECS 448 Software Engineering 12

Why is it Important?

• Software architecture representations facilitate the communication
between all parties (stakeholders)
• Architecture highlights, early design decisions that will have a

profound impact on all software engineering work that follows
• Architecture ”constitutes a relatively small, intellectually graspable

mode of how the system is structured and how its components
work together”

13EECS 448 Software Engineering

How to Make Architectural Decisions?

• Start with the requirements that define how the system will interact with
the environment
• Then, do a system decomposition

• Tackle complexity by “divide and conquer”
• See if some parts already exist & can be reused
• Focus on creative parts
• Support flexibility and future evolution by decoupling unrelated parts

(“separation of concerns”)

• Decision making often involves compromise
• Limitations and constraints in the context
• Business priorities, available resources, core competences, competitors’ moves,

technology trends, existing investments, etc.

14EECS 448 Software Engineering

Key Concerns

• Key concerns when making main (principal) decisions
• System decomposition
• How do we break up the system into the right pieces?
• Do we have all the necessary pieces?
• Do the pieces fit together?

• Cross-cutting concerns
• Broad-scoped qualities or properties of the system
• Tradeoffs among the qualities

• Conceptual integrity

EECS 448 Software Engineering 15

Decomposition

• Partition vs. Projection

isolating items
and removing
relationships

simplifying representation –
reducing dimensions

EECS 448 Software Engineering 16

An Example
PROBLEM DOMAIN

Software-to-be

(1) Tenant (4) List of
valid keys

(3) Lock

(6) Photosensor

(7) Light

(8) Alarm bell

(9) Desktop computer

Subsystem-2

Subsystem-1

Subsystem-3

Subsystem-4

(2) Landlord

(3) Key

(5) Device
preferences

(10) Tenant
accounts

(11) Log of
accesses

REQ1, REQ2,
REQ3, REQ4REQ3

REQ5, REQ7,
REQ8, REQ9

REQ4

REQ1: Keep door locked and auto-lock
REQ2: Lock when “LOCK” pressed
REQ3: Unlock when valid key provided
REQ4: Allow mistakes but prevent dictionary attacks
REQ5: Maintain a history log
REQ6: Adding/removing users at runtime
REQ7: Configuring the device activation preferences
REQ8: Inspecting the access history
REQ9: Filing inquiries

EECS 448 Software Engineering 17

Architectural Design Process

• System structuring
• The system is decomposed into several principal sub-systems and

communications between these sub-systems are identified

• Control modelling
• A model of the control relationships between the different parts of

the system is established

•Modular decomposition
• The identified sub-systems are decomposed into modules

EECS 448 Software Engineering 18

Sub-systems and Modules

A sub-system is a system in its own right whose operation is
independent of the services provided by other sub-systems.

A module is a system component that provides
services to other components but would not
normally be considered as a separate system

EECS 448 Software Engineering 19

Real-world Sub-system Examples

• Typically organized as Java packages/C++ libraries/C# assemblies
• Database access layer

• MySQL access, JDBC layer
• Security services

• Encryption classes, signature classes (modules)
• External payment sub-system
• Email service sub-system
• Logging sub-system
• Financial transaction sub-system
• Marketing sub-system

EECS 448 Software Engineering 20

Architectural Styles

• The architectural design is expressed as a block diagram
• Nodes represent components

• Procedures, modules, processes, tools, databases
• Edges represent connectors

• Procedure calls, event broadcasts, database queries, pipes
• A set of constraints on how they can be integrated
• Semantic models to help understand the overall properties of a system

• Architectural style:
Defines a family of systems in terms of a pattern of structural organization

21EECS 448 Software Engineering

Architectural Models

• Different architectural models may be produced during the
design process
• Architectural models and their combination are selected to best

fit the characteristics and constrains from requirements
modeling
• Each model presents different perspectives on the architecture:
• Static structural model: shows the major system components
• Dynamic process model: shows the process structure of the system
• Interface model: defines sub-system interfaces
• Relationships model: e.g., data-flow model

EECS 448 Software Engineering 22

Typical Problems
1. User works with computer system (environment irrelevant/ignored)

2. Computer system controls the environment (user not involved)

3. Computer system intermediates between the user and
the environment

User System

System Environment

User System Environment

User

System

Repository

SystemIN doc OUT doc

1.a) System transforms input document to output document

1.b) User edits information stored in a repository

User System Environment

User System Environment

3.a) System observes the environment and displays information

3.b) System controls the environment as commanded by the user

EECS 448 Software Engineering 23

Controlling
subsystem

Controlled
subsystem3.b) Commanded behavior:

Operator

Monitoring
subsystem

Monitored
subsystem3.a) Information display:

Display

2. Required behavior: Controlling
subsystem

Controlled
subsystem

Feeding
subsystem

Transformation
subsystem

Receiving
subsystem1.a) Transformation:

Data
editor

Data repository

1.b) Simple workpieces:

User

Problem Architecture

EECS 448 Software Engineering 24

Architectural Models

• The Repository Model
• Sub-systems must exchange data

• This may be done in two ways:
• Shared data is held in a central database or repository and may be

accessed by all sub-systems
• When large amounts of data are to be shared, the repository model of

sharing is most commonly used
• Each sub-system maintains its own database and passes data

explicitly to other sub-systems

EECS 448 Software Engineering 25

Architectural Models

• Client-Server Architecture
• A distributed system model

• Data and processing are distributed across a range of
components:
• Set of stand-alone servers: which provide specific services such as

printing, data management, etc.
• Set of clients: which call on these services
• Network: which allows clients to access servers

EECS 448 Software Engineering 26

Architectural Models
• Client-Server Architecture
• Advantages

• Distribution of data is straightforward
• Makes effective use of networked systems. May require cheaper hardware
• Easy to add new servers or upgrade existing servers

• Disadvantages
• No shared data model so sub-systems use different data organisation; data

interchange may be inefficient
• Redundant management in each server
• No central register of names and services - it may be hard to find out what

servers and services are available

EECS 448 Software Engineering 27

Example

• Film and Picture Library

Catalogue
server

Catalogue

Video
server

Film clip
files

Picture
server

Digitized
photographs

Hypertext
server

Hypertext
web

Client 1 Client 2 Client 3 Client 4

Wide-bandwidth network

EECS 448 Software Engineering 28

Architectural Models

• Abstract Machine Model
• Used to model the interfacing of sub-systems
• Organises the system into a set of layers (or abstract machines)
• Each of which provide a set of services

• Supports the incremental development of sub-systems in
different layers
• When a layer interface changes, only the adjacent layer is affected

• However, it is often difficult to structure systems in this way

EECS 448 Software Engineering 29

Example

• ISO/OSI Network Model

Application

Presentation

Session

Transport

Network

Data link

Physical

7

6

5

4

3

2

1

Communica tions medium

Network

Data link

Physical

Application

Presentation

Session

Transport

Network

Data link

Physical

EECS 448 Software Engineering 30

Architectural Models

• Control Models
• Concerned with the control flow between sub systems

• Centralised control
• A control sub-system takes responsibility for managing the

execution of other sub-systems
• Sequential or parallel

EECS 448 Software Engineering 31

Architectural Models

• Control Models
• Concerned with the control flow between sub systems

• Centralised control
• Call-return model
• Top-down subroutine model where control starts at the top of a

subroutine hierarchy and moves downwards
• Such a model is embedded into familiar programming languages such as

C, Java, etc.

EECS 448 Software Engineering 32

Architectural Models

• Control Models
• Concerned with the control flow between sub systems

• Centralised control
• Call-return model

Routine 1.2Routine 1.1 Routine 3.2Routine 3.1

Routine 2 Routine 3Routine 1

Main
program

EECS 448 Software Engineering 33

Architectural Models

• Control Models
• Concerned with the control flow between sub systems

• Centralised control
• Manager model
• One system component controls the stopping, starting and

coordination of other system processes
• Can be applied to concurrent or sequential systems

EECS 448 Software Engineering 34

Architectural Models

• Control Models
• Concerned with the control flow between sub systems

• Centralised control
• Manager model
• e.g., real-time system

System
controller

User
interface

Fault
handler

Computation
processes

Actuator
processes

Sensor
processes

EECS 448 Software Engineering 35

Architectural Models

• Control Models
• Concerned with the control flow between sub systems

• Event-based control
• Driven by externally generated events
• Each sub-system can respond to externally generated events from

other sub-systems or the system’s environment
• Timing of the event is out of the control of the sub-systems

EECS 448 Software Engineering 36

Architectural Models

• Control Models
• Concerned with the control flow between sub systems

• Event-based control
• Broadcast models
• Sub-systems register an interest in specific events
• An event is broadcast to all sub-systems
• When the events occur, control is transferred to the sub-system which can

handle the event
• Control policy is not embedded in the event
• Effective in integrating sub-systems

EECS 448 Software Engineering 37

Architectural Models

• Control Models
• Concerned with the control flow between sub systems

• Event-based control
• Broadcast models

Sub-system
1

Event and message handler

Sub-system
2

Sub-system
3

Sub-system
4

EECS 448 Software Engineering 38

Architectural Models

• Control Models
• Concerned with the control flow between sub systems

• Event-based control
• Interrupt-Driven Systems
• A handler defined for each type of known interrupt
• Each type is associated with a memory location and a hardware switch

causes transfer to its handler
• Used in real-time systems where a fast response to an event is essential

EECS 448 Software Engineering 39

Architectural Models

• Control Models
• Concerned with the control flow between sub systems

• Event-based control

Handler
1

Handler
2

Handler
3

Handler
4

Process
1

Process
2

Process
3

Process
4

Interrupts

Interrupt
vector

EECS 448 Software Engineering 40

Architectural Styles
• “Template for construction”

• Each style describes a system category that encompasses:

(1) A set of components (e.g., a database, computational modules) that perform a
function required by a system

(2) A set of connectors that enable “communication, coordination and cooperation”
among components

(3) Constraints that define how components can be integrated to form the system

(4) Semantic models that enable a designer to understand the overall properties of
a system by analyzing the known properties of its constituent parts.

EECS 448 Software Engineering 41

Architectural Genres
• Genre implies a specific category within the overall software

domain
e.g., AI, commercial, communications, content authoring, financial,
games, etc.
• Within each category, you encounter a number of subcategories:

Within the genre of buildings, there are general styles: houses, condos,
apartment buildings, office buildings, industrial building, warehouses, etc.

• Within each general style, more specific styles might apply: Each style
would have a structure that can be described using a set of predictable patterns

EECS 448 Software Engineering 42

A Real System is a Combination of Styles

Subsystem
for device

control

Subsystem for
administration

Subsystem
for remote

data access

Application
server

Web
browserWeb server

- Valid keys
- Access history
- Tenant profiles
- …

Central
Repository

EECS 448 Software Engineering 43

Architectural Design

• The software must be placed into context
• The external entities
• The interactions

• Identify a set of architectural archetypes
• Similar to a class, it’s an abstraction that represents one element of system

behavior
• Define and refine software components to specify the structure of

the software
• Component implements an archetype

EECS 448 Software Engineering 44

Representing a System in Context

• Architectural Context Diagram (ACD): models how the target system
interacts with entities external to its boundaries.

1. Superordinate systems – those systems that use the target system as part of some
higher level processing scheme

2. Subordinate systems – those systems that are used by the target system and provide
data or processing that are necessary to complete target system functionality

3. Peer-level systems – those systems that interact on a peer-to-peer basis (i.e.,
information is either produced or consumed by the peers and the target system)

4. Actors – those entities (people, devices) that interact with the target system by
producing or consuming information that is necessary for requisite processing

EECS 448 Software Engineering 45

Architectural Context Diagram

Target system

Superordinate systems

Used by

Depends on

Subordinate systems

Uses
PeersUses

Actors interface

EECS 448 Software Engineering 46

Example ACD
SafeHome

target system:
Security Function

SafeHome
Product

Internet-based
system

uses
peers

surveillance
function

useshomeowner

control
panel

sensors sensors

uses

EECS 448 Software Engineering 47

Defining Archetypes
• Archetype is a class or pattern that represents a core
abstraction that is critical to the design of an architecture for
the target system

Archetype

Archetype

Archetype Archetype

Target system

controller

node

detector indicator

SafeHome Security Function

Communicates with

EECS 448 Software Engineering 48

Refining the Architecture into Components

Top-level components in the SafeHome architecture

SafeHome
Executive

External
Communication
Management

GUI Internet
Interface

Function
selection

Security Surveillance Home
management

Control
panel

processing

detector
management

alarm
processing

EECS 448 Software Engineering 49

Instantiation of the Architecture

• Further refinement: to apply the
abstract architecture within the
problem domain
• Instantiation elaborates

components with additional
detail

sensorsensorsensorsensor
sensorsensorsensorsensor

External
Communication
Management

GUI Internet
Interface

Security

Control
panel

processing

detector
management

alarm
processing

Keypad
processing

CP display
functions

scheduler

sensorsensorsensorsensor

phone
communication

alarm

SafeHome
Executive

EECS 448 Software Engineering 50

Assessing Alternative Designs

• Architecture Trade-off Analysis Method (ATAM)
• Developed by SEI
• An iterative method to assess
design tradeoffs

1. Collect scenarios (use cases).
2. Elicit requirements, constraints, and environment description.
3. Describe the architectural styles/patterns that have been
chosen to address the scenarios and requirements:
• module view
• process view
• data flow view

4. Evaluate quality attributes (reliability, performance, security,
etc.) by considering each attribute in isolation.
5. Identify the sensitivity of quality attributes to various
architectural attributes for a specific architectural style.
6. Critically analyze candidate architectures (developed in step 3)
using the sensitivity analysis conducted in step 5.

EECS 448 Software Engineering 51

Assessing Alternative Designs

• Architectural Complexity
• The overall complexity of a proposed architecture is assessed by

considering the dependencies between components within the
architecture
• Sharing dependencies represent dependence relationships among

consumers who use the same resource or producers who produce for the
same consumers
• Flow dependencies represent dependence relationships between

producers and consumers of resources
• Constrained dependencies represent constraints on the relative flow of

control among a set of activities

EECS 448 Software Engineering 52

Modular Decomposition

• Sub-systems are decomposed into modules:
• Object model
• The system is decomposed into interacting objects

• Data-flow model
• The system is decomposed into functional modules which transform

inputs to outputs. Also known as the pipeline model

• If possible, decisions about concurrency should be delayed
until modules are implemented

EECS 448 Software Engineering 53

Object Models

• Structure the system into a set of loosely coupled objects with well-
defined interfaces
• Object-oriented decomposition aims at identifying
• Object classes
• Their attributes and operations

• When implemented, objects are created from these classes and some
control model used to coordinate object operations

EECS 448 Software Engineering 54

Data-Flow Models

• Functional transformations process their inputs to produce outputs
• May be referred to as a pipe and filter model (as in UNIX shell)
• When transformations are sequential, this is a batch sequential model which

is extensively used in data processing systems

• Not really suitable for interactive systems

Input

Process
Output

EECS 448 Software Engineering 55

Transform Mapping

• Transforms a Data Flow Diagram
(DFD) to an architectural style.
• e.g., deriving the call-and-return

architecture DFD

a
b

c
d e f g h

i
j

M

I P O

b c

a

d e f g i

h j

EECS 448 Software Engineering 56

Example

• Step 1: Review the fundamental system model
• Step 2: Review and refine DFDs

EECS 448 Software Engineering 57

• Refine until each transform shows high
cohesion – having a single distinct function

• Indicate flow boundaries

EECS 448 Software Engineering 58

Example

• Step 3: Determine the flow characteristics
(transform or transaction)
• Step 4: Isolate the transform center by

specifying incoming and outgoing
boundaries
• Separates incoming and outgoing data flows
• Select reasonable boundaries

first-level factoring

EECS 448 Software Engineering 59

Example

• Step 5: Perform first-level factoring
• Factoring: A program structure of “decision makers” and “workers”

typical "worker" modules

typical "decision
making" modules

direction of increasing
decision making

Top-down distribution of control

EECS 448 Software Engineering 60

Example

• Step 6: Perform second-level factoring
• Map transforms into modules

• Begin at the transform center
• Work from the boundary outward
• Not necessarily one-to-one

• “First-iteration” design
• Process Specification (PSPEC) and a state

transition diagram can be used
• Indicate the content of each module

• Step 7: Refine the first-iteration design

EECS 448 Software Engineering 61

References

• Prof. Fengjun Li’s EECS 448 Fall 2015 slides

• This slide set has been extracted and updated from the slides
designed to accompany Software Engineering: A Practitioner’s
Approach, 8/e (McGraw-Hill 2014) by Roger Pressman

62

