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Abstract. Animations are sequences of still images chained together
to tell a story. Every story should have a beginning, a middle, and an
end. We argue that this advice leads to a simple and useful idiom for
creating an animation Domain Specific Language (DSL). We introduce
our animation DSL, and show how it captures the concept of beginning,
middle, and end inside a Haskell applicative functor we call Active.
We have an implementation of our DSL inside the image generation
accelerator, ChalkBoard, and we use our DSL on an extended example,
animating a visual demonstration of the Pythagorean Theorem.

1 Introduction

Consider the problem of specifying the corners of a rotating square that is also
moving from one location to another. There are two fundamental things hap-
pening over time: rotation and translation. The location of the corners is simply
the combination of both movements, without interaction or interference. When
describing more complex animations, however, we want to model simple interac-
tions, and more generally, causality. Specifically, we want to introduce concepts
like termination and sequentiality, and be able to describe interactions as one
thing happening after another. In this paper, we discuss a composable solution to
this description challenge which uses a Domain Specific Language (DSL) on top
of Haskell [1] to express values that change over time, and also have a beginning
and an end.

The fundamental question when crafting any type-based DSL is figuring out
the key types and the primitives for these types. When we look at our target ap-
plication, educational animations, and also look at animation tools in PowerPoint
and Keynote, we make the following two basic observations. First, animations
take a finite length of time, with a specific start and end point. In a sense, ani-
mations have a presence inside time, in the same way as a square can be present
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Fig. 1. The age combinator

on a 2D plane. We postpone considering infinite dynamic animations with our
DSL, because we are explicitly attempting to build a language for scripting finite
animations. Second, animations also often contain static, infinite elements, per-
haps background images, that do not change for the duration of an animation.
From these simple observations, we propose two primitives in our DSL, one that
changes over time and is finite, and one that is static and infinite.

This paper presents these primitives, and a combinator-based language for
creating dynamic animation using the primitives. We use an applicative func-
tor [2] structure to implement this abstraction and incur other advantages, such
as the clean and easy composition of animations (Section 2). We also provide
a number of helper combinators and predefined functions for quickly creating
functional animations (Section 4). Finally, we show how our language can be
used to easily create practical, non-trivial animations (Section 5).

2 The Active Language

Our solution to this animation problem is the Active language. The conceptual
framework behind the Active language is that all animations have a beginning,
a middle, and an end. For every object in our language, we normalize the time
component of an animation such that the value starts from 0 (the beginning
of animation time), and ending at 1 (the end of animation time). This can be
illustrated using the figure 1(a), where the dots are the beginning and end, and
the line is the progression, or age, of an animation. The user of age does not
need to be concerned about when each animation runs in the global time scale,
but can instead build each animation with the assumption that it will act over
its own 0 to 1 progression, and compose them later.

What happens before something is animated, or after animation? We choose
to have an Active value be a constant before and after animation. Consider
animating a object traveling; it is in one place before the animation, in transition
during the animation, and one another place after the animation. We therefore
choose our basic Active object to be of unit size in time (from 0 to 1), but
also have a value before and after any animation. Figure 1(b) illustrates our
realization of the representation in 1(a).
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Our implementation of the Active language accomplishes this timing ab-
straction using a data type Active and a few primitive functions. The Active
data type is defined (in Haskell) as:

data Active a -— Dynamic Animation
= Active Ratiomal —-- start time
Rational -- stop time
(Rational -> a) -- what to do in this time frame
| Pure a -- Static Animation

The first two Rationals are used to hold timing information, specifically
the start and stop time of the current object. The function takes a Rational
argument, representing time values between the start and stop times, and returns
an animated value in the context of the time. The alternative constructor, Pure,
is the way we represent an Active that is constant over time. The most primitive
value in the Active DSL is age:

age :: Active UI
age = Active 0 1 f
where fn | n < 0 = error $ "age value negative" ++ show n
| n>1 error $§ "age value above unit (1)" ++ show n
| otherwise = fromRational n

age represents the most basic Active, which has a start time of 0 and a stop
time of 1, as discussed above. This Active object also holds within it a basic
function that returns the input Rational time value as a UI. A UI is simply
a type synonym for Float, but is used to represent only those values on the
interval [0,1]. Because the function stored within age returns a UI, age is of the
type Active UI. Actions can then be mapped over this returned UI, but in order
to do this, we must first define Active as a functor, given below for the curious
reader. We also provide applicative functor capabilities. Specifically, applicative
functors as used here allow for the declaration of a constant (static, infinite)
Active value and the combination two Active values:

instance Functor Active where
-- fmap :: (a -> b) -> Active a -> Active b
fmap f (Active start stop g) = Active start stop (f . g)
fmap f (Pure a) = Pure (f a)

instance Applicative Active where
-- pure :: a —> Active a
pure a = Pure a

-— (<*>) :: Active (a -> b) -> Active a -> Active b
(Pure a) <*> b = fmap a b
(Active startO stop0 f0) <*> (Pure a) =
Active startO stop0 (\ i -> (f0 i) a)
a0@(Active startO stopO f0) <*> al@(Active startl stopl f1) =
Active (min startO startl) (max stopO stopl)
$ \ i -> fO (boundBy a0 i) (f1 (boundBy al i))
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When applying two animations, using the applicative functor <*> combi-
nator, the interesting case is when combining two non-static animations. The
first argument is a function which changes over time, the second is a value that
changes over time, and the result is the application of the function to the argu-
ment, at every point in time. We choose to make this combined animation start
at the earliest beginning of the two arguments, and finish at the last ending.

These definitions are particularly helpful in creating and combining anima-
tions. For example, the <*> operator allows for multiple animation functions to
easily be applied to the same initial object. This ability can be really useful if, for
instance, we wish to move an object while simultaneously scaling it. Active be-
ing an applicative functor is also helpful in creating combinators and predefined
functions, as we will see in Section 4.

age is the primary method of creating an Active object. Once we have
created an Active, all we have to do to get values over time is fmap a function
over it. Generally for animation, this function would return an image so that
we could display the returned images over time, creating an animation. The
function can actually return any value, however, as shown by this definition for
linear interpolation over time between two points:

simpleLerp :: (Float,Float) -> (Float,Float) -> Active (Float, Float)
simpleLerp (x1,y1) (x2,y2) = fmap (\ui -> lerp ui (x1,y1l) (x2,y2)) age
where lerp ui (x1,y1) (x2,y2) = ( xl+ui*(x2-x1) , yil+uix(y2-y1) )

This Active will return values ranging linearly from (x1,y1) to (x2,y2) over
time (though lerp would typically be a predefined library function). We can also
begin to see some of the abstraction the Active DSL provides. Notice how the
creation of this Active is completely independent from any timing information
other than its own personal time progression. This same Active can be used
to create a lerp that takes 1 second to complete or 100 seconds. The timing
can be applied to each Active object separately, using either basic functions or
built-in combinators. The primitive Active functions for handling timing effects
are scale, mvActive, and after:

scale :: Float -> Active a -> Active a
scale _ (Pure a) = Pure a

scale u (Active start stop f) = Active (scale u start) (scale u stop)
$ \ tm -> £ (tm / toRational u)

mvActive :: Float -> Active a -> Active a

mvActive _ (Pure a) = Pure a

mvActive d (Active start stop f) = Active (toRational d + start)
(toRational d + stop)
$ \ tm -> f (tm - toRational d)

after :: Active a -> Active b -> Active a
after act@(Active low _ _) (Active _ high _) =
mvActive (fromRational (high - low)) act
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When applied to an Active object, scale will stretch or shrink the amount
of time that the object acts over. This can be used to make certain animations
longer or shorter. It should be noted that this definition is actually an instance
of a previously-defined Scale type class. This is not critical to understanding
the details of scale except that it explains the call to scale within the body
of the definition. This is a call to scale’s previously-defined Rational instance
(which simply multiplies the two numbers).

mvActive is used for translating time values. When applied to an Active ob-
ject, mvActive moves an animation forwards or backwards in time with regards
to the rest of the scene. It can be used to put parts of an animation in the right
place or offset animations to start at slightly different times.

The last basic timing function is the after function. It takes two Active’s
as parameters and changes the time values of the first so that it will occur
immediately after the second one finishes. This function is especially important
for building up combinators to manage the ordering of animations in a scene, as
we will see in Section 4.

3 ChalkBoard

The ChalkBoard project is an attempt to bridge the gap between the clear
specification style of a language with first-class images, and a practical and effi-
cient rendering engine. We will use ChalkBoard as an engine to display images
generated using Active. The hook for ChalkBoard is that with the first-class
status offered by pure functional languages comes clean abstraction possibilities,
and therefore facilitated construction of complex images from many simple and
compossible parts. This first-class status traditionally comes at a cost though—
efficiency. Unless the work of computing these images can be offloaded onto
efficient execution engines, then the nice abstractions become tremendously ex-
pensive. ChalkBoard was designed to bridge this gap by creating a functional
image description language that targeted the OpenGL standard.

In order to understand the specifics of the ChalkBoard language, we need
to think about types. In ChalkBoard, the principal type is a Board, a two di-
mensional plane of values. So a color image is a Board of color, or RGB. A color
image with transparency is a Board of RGBA. A region (or a plane where a point
is either in a region or outside a region) can be denoted using Board of Bool.
Table 1 lists the principal types of Boards used in ChalkBoard.

The basic pattern of image creation begins by using regions (Board Bool) to
describe primitive shapes. ChalkBoard supports unit circles and unit squares, as
well as rectangles, triangles, and other polygons. The primitive shapes provided
to the ChalkBoard user have the following types:

circle :: Board Bool

square :: Board Bool

rectangle :: Point -> Point -> Board Bool
triangle :: Point -> Point -> Point -> Board Bool

polygon :: [Point] -> Board Bool
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Board RGB Color image

Board RGBA Color image with transparency

Board Bool Region

Board UI Grayscale image of Unit Interval values
type R = Float Represent real numbers

type Point = (R,R) 2D coordinate or point

Table 1. Boards and Type Synonyms in ChalkBoard

To “paint” a color image, we map color over a region. Typically, this color im-
age would be an image with the areas outside the original region being completely
transparent, and the area inside the region having some color. This mapping can
be done using the combinator choose, and the <$> operator:

choose (withAlpha 1 blue) transparent <$> circle

We choose the color blue with an alpha value of 1 for inside the region, and
transparent for outside the region. The <$> operator is a map-like function which
lifts a specification of how to act over individual points into a specification of
how to translate an entire board. The types of choose and <$> are

choose :: 0 a->0a->0Bool ->0 a
(<$>) :: (0 a->0Db) -> Board a -> Board b

where 0 a is an observable version of a.

As well as translating point-wise, ChalkBoard supports the basic spatial
transformation primitives of scaling, moving, and rotating, which work over any
Board.

scale :: R -> Board a -> Board a
move :: (R,R) -> Board a -> Board a
rotate :: R -> Board a -> Board a

Although there are many more functions and possibilities available in Chalk-
Board, we should now know enough to begin talking about its use within the
context of the Active DSL. Any additional required ChalkBoard information
will be explained as needed, but for a better background understanding, see the
original paper on ChalkBoard [3].

4 Active Combinators

Now that we have some of the most important functions in the Active language,
we want to make using them with ChalkBoard easier. One natural way to do this
is to create combinators that integrate common Active and ChalkBoard tasks.
The first, and perhaps most essential, of these is the over function:
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over :: Over a => Active a -> Active a -> Active a
over al a2 = fmap (\ (a,b) -> a ‘over‘ b) (both al a2)

both :: Active a -> Active b -> Active (a,b)
both a b = pure (,) <*> a <*> b

The over function takes two Active parameters and combines them so that
both animations are displayed one on top of the other (but not necessarily at
the same time). over is actually an instance of the ChalkBoard Over type class,
which helps explain the second reference to over in the body of the definition.
This uses the ChalkBoard version of over to overlay two static objects, most
notably boards with transparency, Board RGBA.

While over and our current timing functions let us combine animation pieces
and display them in order, it can be verbose to specify a long sequence of ani-
mations that should all be overlaid and displayed at times relative to each other.
This led us to create one of the main code structures that we have used repeat-
edly to manage our scenes. The main version of this structure uses the flicker
and taking functions, though multiple derivatives of f1icker have been created
for managing time in different ways. The type of these functions and the general
code structure can be seen here:

flicker :: Over a => [Active a] -> Active a
taking :: Float -> Active a -> Active a

let anim = flicker [ animStepl
, taking 3 animStep2
, taking 0.5 animStep3
]

The flicker function takes a list of Active’s and combines them into one
Active object, with each animation in the list occurring immediately after its
predecessor. Each successive animation is also placed on top of the previous ones,
so parts of a scene can be built independently but displayed together. This is
helpful in increasing the amount of abstraction in building a scene. Constructing
each part separately allows for greater flexibility in changing certain aspects of a
scene without affecting others, and managing the ordering of the scene without
affecting what happens during each part.

taking, on the other hand, helps control the amount of time it takes to
execute each of the individual animations. The taking function stretches or
shrinks an Active so that it occurs in the amount of time specified by the
Float argument. Generally, taking is easiest to use in close conjunction with
the flicker function, as shown above, though it does not have to be. This just
keeps most of the timing information in one place, even if one does not directly
affect the other.

Now that we can manage the ordering and timing of an animation pretty well,
we can start looking at some good combinators for common animation tasks. To
help create many of these combinators, we use the addActive function:
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addActive :: (UL -> a -> b) -> Active a -> Active b
addActive fn act = (fmap fn age) <*> act

This is a simple function we use to create many animation functions. Typi-
cally for animation, the a and b types are Board’s of some variety. The function
argument is then a representation of how we want to change a Board over time,
and the Active argument contains a Board we want to change (though it may
already be changing in other ways as well). addActive is especially helpful in
adding new animations to existing ones, allowing us to avoid the systematic cod-
ing overhead of placing each new function into an Active and then applying it
to the previous Active.

We use addActive to help create many of our predefined animation functions,
including the standard 2D transformation functions from ChalkBoard (move,
scale, and rotate) applied over time. As an example of this usage, the prede-
fined move-over-time function in Active is:

activeMove :: (R,R) -> Active (Board a) -> Active (Board a)
activeMove (x,y) = addActive $ \ui -> move (uix*x,uixy)

This function takes the ChalkBoard move command and turns it into a func-
tion over time as well. The move command in ChalkBoard simply moves a Board
from its current position by a specified amount in the x and y directions. These
amounts are given, respectively, in the ordered pair (R,R). The Active version
of this function does the same thing, but applies this move over time. It will
treat the input UI time value as a percentage and move the Board inside the
Active argument step by step as the time value increases from 0 to 1, finally
ending up displaced by a total amount of (x,y).

Other common actions defined using addActive are the remaining trans-
formation functions (activeScale and activeRotate), as well as functions for
making an Active appear/disappear (activeAppear, activeTempAppear, and
activeDisappear). All of the Active versions of the ChalkBoard transforma-
tions (move, scale, and rotate) are versions of those functions that are applied
over time. The appear/disappear functions tell a given Active whether it should
only be visible once its time value is great than 0 (activeAppear), when its time
value is in between 0 and 1 (activeTempAppear), or from the start of execution
up until its time value is 1 (activeDisappear). Unless one of these functions is
applied, all Active’s will remain visible for the duration of the scene, regardless
of when their animations execute (since they will still be receiving time values
of 0 or 1). Example usage of these functions is the subject of the next section.

5 Case Study

While testing the current features and usability of Active, we decided to recreate
an existing animation. This was done both to see how close we could get to the
original, as well as how difficult it would be to do so. The animation we chose for
this experiment was an animated proof of the Pythagorean Theorem that can
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be found on Wikipedia at http://en.wikipedia.org/wiki/Pythagorean_theorem.
This example was visually pleasing, served a useful purpose, and was exactly
the type of animation we wanted to create easily in ChalkBoard. It also was
complicated enough that we felt like it would be a good test of ChalkBoard’s
features, without being too complicated as to prevent new users, who haven’t
seen any of these feature before, from following along.

In building this and other examples, a general structure for ChalkBoard ani-
mations using Active has begun to appear. It looks something like the following:

let animStepl

animObject = ...
animStep2 = . £ animObject ...
animStep3 = . g animObject ...

let wholeAnim = flicker [ animStepl, animStep2, animStep3 ]

First, the individual pieces of the animation are constructed. This stage con-
sists of building all the separate Active Board’s that will be the parts of the
final scene. These could be such things as an object moving, rotating, changing
colors, or a ton of other possibilities. The second stage of construction is string-
ing all of these smaller pieces together into a coherent whole using functions such
as flicker. After the animation is complete, it can then be played back, saved,
or manipulated however the user wishes. While creating animations using this
structure is by no means the only way to do so, it has proven to be effective
for the examples we have built thus far. Therefore, this case study will follow
the same structure, explaining how each stage was completed and some of the
functions that were used.

5.1 Stage 1: Building Animation Pieces

In beginning the Pythagorean example, we start by creating all of the different
Active animation pieces that will be used in the scene. The first of these is the
animation’s background, which we just build to make about the same color as
the Wikipedia animation. The pure function is then applied to this background
board to lift it into the Active (Board a) space so that it can be combined
with the other Active Board objects we create for the animation.

Next, we build up a basic triangle in the middle of the screen, with code that
looks something like the following:

let (x,y) = (0.2,0.15)
(a,b,c) = ((-x,y), (-x,-y), (x,-y))
triangle345 = triangle a b c
trilines = pointsToLine [a, b, ¢, a] 0.004
mainTriangle = (choose (alpha black) transparent <$> trilines)
‘over*

(choose (alpha yellow) transparent <$> triangle345)
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In doing this, we first create a 3-4-5 triangle by giving three points to the
triangle constructor. This creates a Board Bool of our triangle. We also want
a black outline around it in order to match the original animation. To do this, we
use the pointsToLine function, which takes a list of points and a line width and
draws a line between all adjacently listed points. Both Board Bool’s are then
given their colors by using the choose function as shown. This makes the lines
black over a transparent background (so we can see the triangle behind them)
and the triangle yellow with a transparent background (to see the animation’s
background behind it).

While this code does create a simple triangle, the triangle itself is never actu-
ally displayed in the animation. Instead, this triangle is transformed in different
ways to create the displayed triangles. For instance, the initial triangle shown
in the animation is achieved by scaling mainTriangle by 1.5. The animation
for shrinking and moving this new triangle into its final position is achieved by
adding Active functions, as shown below:

let movingTriangle = activeMove (y,x) $ activeScale (2/3) $
pure $ scale 1.5 $ mainTriangle

First, the triangle is lifted into the Active world using pure. Then we start
to add animation functions to it. In this instance, we apply an activeScale and
an activeMove. This creates an animated triangle that shrinks slightly while
also moving slightly up and to the right. Images of this resulting animation are

in Figure 2.

Fig. 2. movingTriangle animation

As a note, all of the text for this animation was actually added in last,
separate from the geometry. In this case study, we will only be covering the
creation of the geometric animation, and not the insertion of font. This is due
to space constraints and because the only interesting font problem that involves
the Active DSL is when to make the pieces appear and/or disappear (which we
will already cover).

Moving on with the example, the next step is to create three identical but
rotated triangles as displayed in the Wikipedia graphic. These are created using
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the list comprehension in otherTriangles (defined below), which simply rotates
a moved version of the original mainTriangle:

let movedTriangle = move (y,x) $ mainTriangle
otherTriangles = [ rotate (-i*pi/2) $ movedTriangle | i <- [1..3] ]
addOtherTriangles = foldll over [ mvActive i $ activeAppear $ pure $ t
| (t,i) <- zip otherTriangles [1..] ]

These triangles are then made to appear when their animations start using
the activeAppear function as described in Section 4. The next step, however,
is getting them to appear individually. While they could each be treated as an
independent animation piece and listed separately in the flicker portion of the
program, we instead choose to apply the mvActive function to each of these
new triangles in order to save time and make our code cleaner. As described
in Section 2, this function (not to be confused with activeMove) simply moves
the actions of a given Active backwards or forwards in time by the given value.
Using the list comprehension in addOtherTriangles above, each new triangle
is made to appear a little later in time than the previous. Finally, the list of
Active Board objects, each element representing one new triangle appearing,
is compressed into a single Active Board using foldll with the over func-
tion. Figure 3 shows each of the new triangles being added individually to the
animation.

| N

Fig. 3. addOtherTriangles animation

The next part of the animation is just adding in a couple missing pieces to
the image so that the full area can be clearly seen. A small yellow square is
added to the middle so that the larger square can be seen to have a size of ¢ X c.
This larger square therefore has an area of ¢2, as indicated by the accompanying
text. The result of this small portion of the animation can be seen in Figure 4.

Next, we need to slide the top triangles down to match up with the lower
triangles, as seen in Figure 5. We also want an outline of the old triangles to re-
main behind so we can see where they started (like in the original on Wikipedia).
This is done in two parts, both of which are defined below:
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area =¢*

Fig. 4. fillSquare animation

let fadedTris = [ rotate (-i*pi/2) $ move (y,x) $
choose (withAlpha 0.6 white) transparent <$> triangle345

| i <= [0,1] 1]

slideLeft = activeAppear $
(activeMove (-2*y,-2%x) $ pure $ movedTriangle)
‘over‘ (pure $ head fadedTris)

slideRight = activeAppear $
(activeMove (2*x,-2*%y) $ pure $ head otherTriangles)
‘over‘ (pure $ last fadedTris)

The first part is to fade the existing triangles to leave behind as outlines,
and the second is to create the new triangles that will actually move. The first
part is done by placing white triangles with alpha values of 0.6 over the two
existing triangles so that they will appear faded. For the second part, we create
the first slide by reusing movedTriangle (top right triangle) and applying an
activeMove down to its final position on the bottom left. We do pretty much
the same thing with the second slide, but grab the initial triangle from the head
of otherTriangles (first rotated triangle on the top left) and slide it right.

The final part of the animation is simply changing the organization of the
resulting shapes. Now that the triangles are in their final positions, two new
squares can be drawn that cover the entire area. These squares have side lengths
of a and b, and thus areas of a® and b2. This in effect concludes the proof that
a® + b? equals the original area of ¢2. In order to animate this part, we use the
same general strategy as fading out the two triangles in the last step:

let newSquares = (move (y, -y) $ scale 0.4 $ square)
‘over‘ (move (-x, -x) $ scale 0.3 $ square)
(s1, s2) = (x-y, x+y)
newLines = pointsToLine [(-s1,-s2), (s2,-s2), ..., (-s1,-s1)] 0.004
fadeInSquares = (fadeIn black 1 newLines)
‘over‘ (fadeIn yellow 1 newSquares)

fadeIn :: 0 RGB -> UI -> Board Bool -> Active (Board (RGBA -> RGBA))
fadeIn rgb a brd = fmap fn age
where fn ui = choose (withAlpha (o (ui*a)) rgb) transparent <$> brd
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area = ¢?

area =¢?

area = ¢?

area = c*

area = c*

area = ¢?

Fig. 5. slideLeft and slideRight animations

The main differences are that this time we use yellow squares with alpha
values of 0.9 so that the new squares will be a darker yellow instead of a lighter
one, and that we also draw lines around the new squares to make them clearer.
The squares to be faded in are created as Board Bool shapes in ChalkBoard, like
normal, and moved to the right locations. They are then faded in over time using
the fadeIn function (predefined in Active, but included here for reference). This
function simply creates an Active that fades a Board RGBA in from transparent
to the given RGB and alpha value. The lines around the squares are also faded
in over the squares at the same time, using the same function. This final piece

of the animation is shown in Figure 6.

area = ¢*

area =¢*

area = ¢*

c?=a?+b?

Fig. 6. fadelnSquares animation
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5.2 Stage 2: Combining Animation Pieces

In this example, each part of the animation is created separately. The smaller
animation pieces often use some of the same basic structures repeatedly, and
this piecemeal construction strategy lends itself well to reuse. For instance, the
originally defined maintriangle, which is never directly displayed, is rotated
and moved around to create most of the triangles in the scene. While longer
animations can be created directly using the mvActive function, we have found
that it is generally much cleaner and easier to organize simple animations into
a series using one of our combinators, such as flicker.

Using the flicker function in this way is the second major stage we discussed
for creating an animation. With the flicker function, animations can be strung
together, one after the other, stacking newer parts onto older ones. The time each
individual animation component takes to be performed can be specified using
the taking function, as described earlier. Our general structure looks like:

let anim = flicker [ taking 0.5 $ background
, taking 1 $ firstABC
, taking 1 $ movingTriangle

, taking 1 $ fadeInSquares ‘over‘ thirdABC
, taking 3 $ finalABC ‘over‘ formula
]

This use of flicker and taking is what we use to manage the majority of
our ordering and timing for animations. It returns a single Active Board that
can then be used to display the whole animation, or reused in turn to create an
even bigger animation, hierarchically. In terms of displaying the animation, this
will largely be done the same way for most animations:

sid <- startDefaultWriteStream cb "pythagorean.mp4"
playObj <- byFrame 29.97 anim

let loop = do mbScene <- play playObj
case mbScene of
Just scene -> do
drawChalkBoard cb $ unAlphaBoard (boardOf white) scene
frameChalkBoard cb sid
loop
Nothing -> return ()
loop

First, the Active Board must be turned into a Player using the byFrame
function (which also takes a desired frame rate). The Player is then passed to
the play function to retrieve the next image of the animation (or Nothing, if
the animation is finished). Finally, this retrieved image can be used in any way
that ChalkBoard can use a Board. Traditionally, the image is displayed on the
screen using drawChalkBoard or saved into a video file with frameChalkBoard
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(or both). After this, the process of calling play on the Player must be repeated
to extract the next image. This is usually placed into a simple loop that extracts
and then displays the returned frame, as shown above. We used this method to
produce a video of the full animation created in this case study. The video can
be seen online at http://www.youtube.com/watch?v=UDRGhTFul7w.

6 Related Work

There have been numerous image description DSLs using functional languages,
many of them capable of animation. A lot of the image description languages
similar to ChalkBoard are described in our earlier ChalkBoard paper [3].

In particular, the work of Conal Elliott had one of the largest influences on
ChalkBoard. Elliott has been working on functional graphics and image gen-
eration for many years and has produced a number of related systems. These
include Fran [4], Pan [5], and Vertigo [6]. ChalkBoard was heavily influenced by
Pan and started from the same basic set of combinators provided in Pan.

In terms of animation and the Active DSL, some similar systems that
have been created are Slideshow [7] and the function system presented by Kavi
Arya [8]. One of the major differences between the Active animation system
and these, however, is the treatment of time. Slideshow is predominately frame-
based because of its goal of generating slides for presentations. Arya’s system,
meanwhile, can cue animations relative to one another or to object interactions.
The Active DSL, on the other hand, is time-based. It allows the user to cre-
ate functions mapped over a known time progression and then affect the time
management of animations separately. While this management often includes
cueing animations relative to others, similar to the two languages mentioned, it
can also include stretching or shrinking animations and moving them forwards
or backwards in time. A few of the Active combinators can also help provide a
simple framework for reordering animations.

The closest related work to our Active DSL is Hudak’s temporal media
DSL [9], which was also used to specify change over time in a pre-determined
manner, but was used to generate music, not images, and also did not codify
the ability to use applicative functors. The Active DSL is also conceptually
close to Functional Reactive Programming (FRP) [10], even though Active does
not attempt to be reactive in the same sense as FRP. Both Active and (one
implementation form of) FRP are mappings from time to value, however Active
does not implement FRP Events, but rather an Active object has a start and
an end. With Active being designed for presentations and similar educational
animations, all of the actions in the Active DSL are explicitly specified ahead
of time by the user, although they can be in relation to other animations.

Of course, there are many other animation languages and systems. Active
is an attempt to combine the concept of first class functions over time (from
FRP), width in time (like the temporal media DSL), and the idiom of packing
such functions over time (as an analog to stacking boxes in space) to provide a
clean starting idiom for animation specification.
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7 Conclusions and Future Work

The Active language is a mathematically-based system where actions are the
results of mapping functions over time values progressing from 0 to 1. It provides
substantial abstraction for the different pieces that go into creating an animation,
such as the drawing, timing, and ordering, and is useful in practice.

The biggest improvement we hope to make to the Active DSL in the future
is the inclusion of some more precise combinators for the cueing and timing of
animations. While the current structures have proven useful, there are some in-
stances in which the current Active API could have been improved. Specifically,
we hope to work on structures that will allow users to specify when animations
should be visible. In this type of structure, the default may be for animations to
only appear when they are currently active (progressing from 0 to 1), and have
means of specifying which objects should be visible at other times.

Another improvement we hope to make is to increase the amount of internal
sharing that is done by the ChalkBoard compiler in order to more efficiently
create the animations it generates. In our animations, a lot of the same boards
are often reused, just at slightly different positions on the screen. Because Chalk-
Board treats each of these boards as a texture, the potential for reuse of these
textures in animation is very high, they often just need to be remapped onto the
scene at a slightly different location or size.
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