
PADL 2016

Threading the Arduino
with Haskell

Mark Grebe and Andy Gill

The University of Kansas

Haskino
• Haskino provides a mechanism for programming

the Arduino series of microcontrollers using
monadic Haskell, instead of C.

• The current version provides two complementary
methods:

• An interpreter which uses an Arduino tethered
to a host computer.

• C Code generation which may then be
compiled with a runtime and flashed for
standalone operation.

• But first some background…

Haskino Single Threaded Example
exampleE :: IO ()
exampleE =
 withArduino False "/dev/cu.usbmodem1421" $ do
 let button = 2
 let led1 = 6
 let led2 = 7
 setPinModeE button INPUT
 setPinModeE led1 OUTPUT
 setPinModeE led2 OUTPUT
 loopE $ do
 ex <- digitalReadE button
 digitalWriteE led1 ex
 digitalWriteE led2 (notB ex)
 delayMillisE 100

Remote Monads

4

GHCi> send conn (digitalWriteE 2 True)
Arduino: LED on pin 2 turns on

A remote command is a request to perform an action for remote effect,
where there is no result value

A remote procedure is a request to perform an action for its remote
effects, where there is a result value or temporal consequence

GHCi> send conn digitalReadE 3
Arduino: Returns the state of Pin 3

digitalWriteE :: Expr Word8 -> Expr Bool -> Arduino ()
send :: ArduinoConnection -> Arduino a -> IO a

digitalReadE :: Expr Word8-> Arduino Bool

Remote Monads are about Bundling

5

A weak remote monad is a remote monad that sends each of its
remote calls individually to a remote interpreter

A strong remote monad is a remote monad that bundles all of its
remote calls into packets of commands, punctuated by procedures,
for remote execution.

At KU we have developed different strategies for bundling command
and procedures.

We are working on a third method of bundling, using an applicative
bundling.

Haskell and Arduino
Evolution

Levent Erkök’s
hArduino

Previous
Haskino

Current
Haskino

Remote Monad
Type Weak Strong Strong

DSL Embedding Shallow Shallow/Deep Deep

Firmware/
Protocol Firmata Haskino

Interpreter
Haskino

Interpreter/
Runtime

Interpreted/
Compiled Interpreted Interpreted Interpreted/

Compiled

Threading Single
Threaded

Single
Threaded

Multi-
Threaded

Haskino Threads
• The previous version of Haskino inherited it’s concept of

threads from Firmata tasks.

• Tasks in Firmata are sequences of commands which can
be executed at a future time, but they are only run to
completion.

• We have subsequently extended Haskino to allow it to
handle multiple threads of execution, with communication
between the threads, and cooperative multitasking.

• The scheduler may be invoked, and rescheduling happen,
as the result of a delay call or a semaphore procedure call

Interpreter Scheduling
Saving Context

loopE $ do
 digitalWriteE led1 True
 av <- analogReadE inPin
 ifThenElse (av <* 100)
 (do digitalWriteE led2 True
 delayMillisE 1000)
 (do digitalWriteE led3 True
 delayMillisE 2000)
 digitalWriteE led1 False
 digitalWriteE led2 False

0 -1 -2 -

0 Else1 Else

Task Context
0 -

Interpreter Scheduling
Restoring Context

loopE $ do
 digitalWriteE led1 True
 av <- analogReadE inPin
 ifThenElse (av <* 100)
 (do digitalWriteE led2 True
 delayMillisE 1000)
 (do digitalWriteE led3 True
 delayMillisE 2000)
 digitalWriteE led1 False
 digitalWriteE led2 False

2 -

1 Else

Task Context
0 -

Inter-thread Communication
• Running multiple threads is of limited use if there is not a method

of communication/synchronizing.

• Haskino provides a binary semaphore in both the interpreter and
generated code.

• Using Haskino’s remote references in conjunction with
semaphores data may be passed between threads, and more
complicated communications methods such as message
queues constructed.

• Semaphores may also be used to communicate between a task
and an Interrupt Service Routine, which may also be
implemented as monadic tasks.

Inter-thread Communication

myTask1 :: Expr Word8 -> Expr Word32 ->
 Arduino ()
myTask1 led blinkDelay = do
 setPinModeE led OUTPUT
 i <- newRemoteRef $ lit (0 :: Word8)
 loopE $ do
 takeSemE semId
 writeRemoteRef i 0
 while i (\x -> x <* 3) (\x -> x + 1) $ do
 digitalWriteE led true
 delayMillisE blinkDelay
 digitalWriteE led false
 delayMillisE blinkDelay

myTask2 :: Arduino ()
myTask2 = do
 loopCount <- newRemoteRef $

 lit (0 :: Word8)
 loopE $ do
 giveSemE semId
 t <- readRemoteRef loopCount
 writeRemoteRef loopCount $ t+1
 debugE $ showE t
 delayMillisE taskDelay

initExample :: Arduino ()
initExample = do
 let led = 13
 createTaskE 1 $ myTask1 led
 createTaskE 2 myTask2
 scheduleTaskE 1 1000
 scheduleTaskE 2 1050

Interpreter Limitations
• The interpreted version of the Haskino DSL

provides a quick turnaround development
environment.

• However, the interpreter takes most of the available
flash memory space on the smaller Arduino
boards.

• The only other memory available for program
storage is EEPROM, which limits the size of
programs.

Code Generation
• The limitations of the interpreter are overcome by

using a compiler.

• Haskino provides a compiler that translates the
same monadic code the interpreter uses into C
code, which is then compiled and linked with a
small Haskino runtime

compileProgram :: Arduino () -> FilePath -> IO ()

compile :: IO ()
compile = compileProgram initExample "semExample.ino"

Code Generation
Initialization

• Setup initializes memory management, creates
initial task and starts the scheduler

• Loop is unused in Haskino compiled sketches
void setup()
 {
 haskinoMemInit();
 createTask(255, haskinoMainTcb, HASKINOMAIN_STACK_SIZE,
 haskinoMain);
 scheduleTask(255, 0);
 startScheduler();
 }

void loop()
 {
 }

Code Generation
Main Task

• The Arduino () monad passed to the compile
function is used to form the body of the main task

void haskinoMain() {
 createTask(1, task1Tcb, TASK1_STACK_SIZE, task1);
 createTask(2, task2Tcb, TASK2_STACK_SIZE, task2);
 scheduleTask(1,1000);
 scheduleTask(2,1050);
 taskComplete();}

initExample :: Arduino ()
initExample = do
 let led = 13
 createTaskE 1 $ myTask1 led
 createTaskE 2 myTask2
 scheduleTaskE 1 1000
 scheduleTaskE 2 1050

while (1)
 {
 uint8_t bind0;

 bind0 = ref0;
 ref0 = (bind0 + 1);

loopE $ do

 t <- readRemoteRef loopCount
 writeRemoteRef loopCount $ t+1

uint8_t ref0;
void task1() {

 ref0 = 0;

myTask1 led = do

 i <- newRemoteRef $ lit (0::Word8)

Code Generation
Storage Allocation

• RemoteReference’s are compiled into global C
variables, named refX

• Binds are compiled into local variables, defined
local to the code block in which they are used.

createTaskE intTaskId intTask

Code Generation
Task Control Block Allocation
• Compilation of the createTaskE procedure allocates a static task

control block (TCB) as a global, which is passed to the runtime
task creation routine.

• The TCB includes the task’s stack, which is sized by the number of
binds found in the task’s monadic code.

void task1();
#define TASK1_STACK_SIZE 100
byte task1Tcb[sizeof(TCB) + TASK1_STACK_SIZE];

createTask(1, task1Tcb, TASK1_STACK_SIZE, task1);

Code Generation
Scheduling/Runtime

• The small Haskino runtime system used with the
generated C code duplicates the scheduling
capabilities of the Haskino interpreter

• This allow Haskino programs to be move
seamlessly between the two environments.

• Like the Haskino interpreter, generated tasks are
cooperative, only yielding the processor at delays
and semaphore takes.

Multi-LED Example
ledTask :: Expr Word8 -> Expr Word32 -> Arduino ()
ledTask led delay = do
 setPinModeE led OUTPUT
 loopE $ do
 digitalWriteE led true
 delayMillisE delay
 digitalWriteE led false
 delayMillisE delay

initExample :: Arduino ()
initExample = do
 let led1 = 6
 let led2 = 7
 let led3 = 8
 createTaskE 1 $ ledTask led1 500 -- Create the tasks
 createTaskE 2 $ ledTask led2 1000
 createTaskE 3 $ ledTask led3 2000
 scheduleTaskE 1 1000 -- Schedule the tasks
 scheduleTaskE 2 2000
 scheduleTaskE 3 4000

Multi-LED Example

Conclusion
• The updated Haskino provides two complimentary methods of

using Haskell as a development environment for Haskell software
• An interpreter provides a method for quick prototyping in a

tethered environment.
• Compilation to intermediate C allows the programmer to bring the

full power of Haskell to developing more complex standalone
software for the Arduino

• Future work
• We want to explore using HERMIT to semi-automatically translate

from programs written in a more functional style, such as tail
recursion instead of loops, to programs written using the deep
embedding.

• Extended scheduling to add thread priority and preemptive
scheduling.

github.com/ku-fpg/haskino

