
PADL 2016

Haskino: A Remote Monad
for Programming the Arduino

Mark Grebe and Andy Gill

The University of Kansas

Haskino
• Haskino provides a mechanism for programming the

Arduino microcontroller in Haskell, instead of C.

• We provide two complementary methods:

• A method which uses an Arduino tethered to a host
computer.

• A method which out sources entire groups of
commands and control idioms, and allows the Arduino
to run stand-alone.

• But first some background…

Monads!
• Haskell uses monads as the principal way of expressing side-

effecting computation

• The IO monad is the way of talking to the outside world

• The Maybe monad is a way of expressing exceptions

• etc, etc.

• Monads are composable effects

return :: a -> IO a
(>>=) :: IO a -> (a -> IO b) -> IO b

readFile :: FilePath -> IO String
writeFile :: FilePath -> String -> IO ()

3

Controlling an Arduino

I/O operations are often added directed as
monadic IO functions

• This API only supports a single Arduino

• The ability to control the Arduino is
given to everyone

• No statically enforced initialization

• The API does not reflect that the
Arduino is a remote peripheral

setPinMode :: Word8 -> PinMode -> IO ()
digitalWrite :: Word8 -> Bool -> IO ()
…

do setPinMode 2 OUTPUT
 digitalWrite 2 True
 …

4

The Remote Monad Design Pattern

In this remote monad, I/O operations are
added as monadic Arduino functions

• This API supports multiple devices

• The ability to control a specific
Arduino is now first class

• send, or the act of creating the
ArduinoConnection, can enforce
initialization

• The API reflects that the Arduino is a
remote peripheral

send :: ArduinoConnection ->
 Arduino a -> IO a

setPinMode :: Word8 -> PinMode -> Arduino ()
digitalWrite :: Word8 -> Bool -> Arduino ()
…

5

send conn (setPinMode 2 OUTPUT)

send conn (digitalWrite 2 True)

If you want to change the pin mode:

If you want to write an output to the pin:

The Key Remote Monad Idea

6

send conn (setPinMode 2 OUTPUT)

send conn (digitalWrite 2 True)

If you want to change the pin mode:

If you want to write an output to the pin:

send conn (setPinMode 2 OUTPUT >> digitalWrite 2 True)

If you want to change the pin mode and write output to the pin

Can we bundle setPinMode and digitalWrite into a single transaction?

Returning Remote Results

7

• The monadic commands inside send are executed in a remote location
• The results of those executions need to be made available for use locally

send conn $ do
 input <- digitalRead 3
 digitalWrite 2 (not input)

send :: ArduinoConnection -> Arduino a -> IO a
setPinMode :: Word8 -> PinMode -> Arduino ()
digitalWrite :: Word8 -> Arduino ()
digitalRead :: Word8 -> Arduino Bool

res <- send conn (digitalRead 3)

Using result inside Arduino

Returning remote result

• send is a natural transformation from a remote effect to a local effect

• The laws give us the freedom to choose bundling strategy

Remote Monad Laws

sendc :: forall a . Remote a -> Local a

sendc (return a) = return a
sendc (m >>= k) = sendc m >>= sendc . k

Use the monad-transformer lift laws, also known as the monad
homomorphism laws.

The Command Design Pattern

9

data Command =
 SetPinMode Word8 PinMode
| DigitalWrite Word8 Bool
 deriving Show

digitalWrite :: Word8 -> Bool -> Arduino ()
digitalWrite p v = Command $ DigitalWrite p v

send :: ArduinoConnection -> Command -> IO ()
send conn cmd = do
 packCmd <- packageCommand cmd

sendToArduino conn packCmd

GHCi> send conn (digitalWrite 2 True)
Arduino: LED on pin 2 turns on

A remote command is a request to perform an action for remote effect,
where there is no result value

The Command Design Pattern

10

GHCi send Command

send Digital
Write

DigitalWrite encoded
with Serial Protocol

()

GHCi> send conn (digitalWrite 2 True)
Arduino: LED on pin 2 turns on

Remote Procedures

11

data Procedure :: * -> * where
 DigitalRead :: Word8 -> Procedure Bool
 DelayMillis :: Word32 -> Procedure ()

send :: ArduinoConnection -> Procedure a -> IO a
send conn p = do

packP <- packageProcedure p
sendToArduino conn packP
rsp <- waitResponse conn p
return rap

GHCi> send conn DigitalRead 3

A remote procedure is a request to perform an action for its remote
effects, where there is a result value or temporal consequence

Remote Procedures

12

GHCi send Procedure

DigitalRead
DigitalRead encoded
with Serial Protocol

Button State of “False”
encoded with Serial Protocol

False

send

False

GHCi> send conn DigitalRead 3

The Weak Remote Monad

13

A weak remote monad is a remote monad that sends each of its
remote calls individually to a remote interpreter

13

GHCi send Remote

digitalRead 2 Encoded DigitalRead 2

Encoded True

send

()

True

Encoded DigitialWrite 4 False

digitalWrite 4 False
()

()

delayMillis

()

Encoded DelayMillis 100

Encoded ()

digitalWrite 3 True Encoded DigitialWrite 3 True

send conn $ do
 x <- digitalRead button
 digitalWrite led1 x
 digitalWrite led2 (not x)
 delayMillis 100

The Strong Remote Monad

14

A strong remote monad is a remote monad that bundles all of its
remote calls into packets of commands, punctuated by procedures,
for remote execution

14

GHCi send Remote

digitalRead 2 Encoded DigitalRead 2

Encoded True

send

()

True

digitalWrite 4 False
()

()

delayMillis 100

()

Encoded [DigitalWrite 3 True
DigitalWrite 4 False

DelayMillis 100]

Encoded ()

digitalWrite 3 True

send conn $ do
 x <- digitalRead button
 digitalWrite led1 x
 digitalWrite led2 (not x)
 delayMillis 100

Weak, Strong, and EDSL
Versions

• Levent Erkök’s hArduino package is an example of
a weak remote monad, this was our starting point.

• The first version of Haskino extended hArduino by
applying the strong remote monad concepts, to
increase communications efficiency through
bundling.

• To develop our second method of allowing stand-
alone Arduino execution, required a deep
embedding.

EDSL Modifications
• Add Expressions to the language.

• Add remote storage of computation results.

• Add Conditionals to the language

• Replace the Arduino firmware (which was called
Firmata in hArduino and the initial version of Haskino).

• Allows the firmware to handle interaction with an
EDSL and optimizes communication.

Adding Expressions
The tethered Strong Remote Haskino uses commands and
procedures such as:

digitalWrite :: Word8 -> Bool -> Arduino ()
analogRead :: Word8 -> Arduino Word16

To move to the deeply embedded version, we instead use:
digitalWriteE :: Expr Word8 -> Expr Bool ->
 Arduino ()
analogReadE :: Expr Word8 ->
 Arduino (Expr Word16)

Strong commands may be written in terms of Deep ones, i.e.:

digitalWrite p b =
digitalWriteE (lit p) (lit b)

Expression Types
The Haskino EDSL provides Expr a parameterized over the
following types:

• Word8

• Word16

• Word32

• Int8

• Int16

• Int32

• Bool

• Float

• [Word8]

• Numeric operations include addition, subtraction, division,
multiplications, comparisons, and conversion between numeric types.

• Boolean operations include not, and, and or.

• Integer operations include standard bitwise operations.

• [Word8] operations include append and element retrieval.

Remote Refs/Conditionals
class RemoteReference a where
 newRemoteRef :: Expr a -> Arduino (RemoteRef a)
 readRemoteRef :: RemoteRef a -> Arduino (Expr a)
 writeRemoteRef :: RemoteRef a -> Expr a ->

 Arduino ()
 modifyRemoteRef :: RemoteRef a ->

 (Expr a -> Expr a) ->
 Arduino ()

ifThenElse :: Expr Bool -> -- If expression
 Arduino () -> -- Then clause
 Arduino () -> -- Else clause
 Arduino ()
while :: RemoteRef a -> -- Loop Reference
 (Expr a -> Expr Bool) -> -- Termination Test
 (Expr a -> Expr a) -> -- Update Function
 Arduino () -> -- Loop Body
 Arduino ()
loopE :: Arduino () -> -- Loop Body
 Arudino ()

Remote Refs/Conditionals
class RemoteReference a where
 newRemoteRef :: Expr a -> Arduino (RemoteRef a)
 readRemoteRef :: RemoteRef a -> Arduino (Expr a)
 writeRemoteRef :: RemoteRef a -> Expr a ->

 Arduino ()
 modifyRemoteRef :: RemoteRef a ->

 (Expr a -> Expr a) ->
 Arduino ()

ifThenElse :: Expr Bool -> -- If expression
 Arduino () -> -- Then clause
 Arduino () -> -- Else clause
 Arduino ()
while :: RemoteRef a -> -- Loop Reference
 (Expr a -> Expr Bool) -> -- Termination Test
 (Expr a -> Expr a) -> -- Update Function
 Arduino () -> -- Loop Body
 Arduino ()
loopE :: Arduino () -> -- Loop Body
 Arudino ()

Firmata ->
Haskino Firmware

• The firmware and serial communication protocol used with
hArduino is Firmata.

• Firmata is based on MIDI, and has a strange, inefficient 7 bit
encoding.

• Digital and Analog Reads are done via a continuous update
mechanism in Firmata, which would not fit well with the Haskino
architecture.

• Extending Firmata to handle expressions and conditions would
have been very difficult.

• Instead, a new Haskino protocol and firmware were developed.

Strong Haskino Example
example :: IO ()
example =
 withArduino False "/dev/cu.usbmodem1421" $ do
 let button = 2
 let led1 = 6
 let led2 = 7
 setPinMode button INPUT
 setPinMode led1 OUTPUT
 setPinMode led2 OUTPUT
 loop $ do
 x <- digitalRead button
 digitalWrite led1 x
 digitalWrite led2 (not x)
 delayMillis 100

Deep Haskino Example
exampleE :: IO ()
exampleE =
 withArduino False "/dev/cu.usbmodem1421" $ do
 let button = 2
 let led1 = 6
 let led2 = 7
 setPinModeE button INPUT
 setPinModeE led1 OUTPUT
 setPinModeE led2 OUTPUT
 loopE $ do
 ex <- digitalReadE button
 digitalWriteE led1 ex
 digitalWriteE led2 (notB ex)
 delayMillisE 100

Cutting the Cord

• The firmware includes the notion of tasks, which are a
monadic structure which can be scheduled to execute at a
future time.

• These tasks are created using a createTaskE command
which takes an Arduino () monad as a argument.

• Additionally, a bootTaskE command allows one task to be
stored in the Arduino’s EEPROM.

• If the firmware finds a task stored in EEPROM upon boot, it
will execute that task at startup, which provides our desired
ability to execute a program written in Haskell stand-alone.

Comparison of Strong and
Deep Versions

A Larger Example

Conclusion
• Haskino provides two complimentary methods of using Haskell as a

development environment for Haskell software
• Strong remote monad provides a method for quick prototyping in a

tethered environment.
• Deep version of Haskino allows the programmer to bring the full

power of Haskell to developing standalone software for the Arduino
• Future work

• Add a third method of development, directly generating C code from
the Arduino monad.

• We want to extend the scheduling mechanism in Haskino to allow for
interrupt processing and inter-task communication.

• We want to explore using HERMIT to semi-automatically translate
programs written in the tethered strong version into programs written
using deep embedding.

github.com/ku-fpg/haskino

