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Haskino
• Haskino provides a mechanism for programming the 

Arduino microcontroller in Haskell, instead of C. 

• We provide two complementary methods: 

• A method which uses an Arduino tethered to a host 
computer. 

• A method which out sources entire groups of 
commands and control idioms, and allows the Arduino 
to run stand-alone. 

• But first some background…



Monads!
• Haskell uses monads as the principal way of expressing side-

effecting computation 

• The IO monad is the way of talking to the outside world 

• The Maybe monad is a way of expressing exceptions 

• etc, etc. 

• Monads are composable effects

return :: a -> IO a
(>>=) :: IO a -> (a -> IO b) -> IO b

readFile :: FilePath -> IO String
writeFile :: FilePath -> String -> IO ()
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Controlling an Arduino

I/O operations are often added directed as 
monadic IO functions 

• This API only supports a single Arduino 

• The ability to control the Arduino is 
given to everyone 

• No statically enforced initialization 

• The API does not reflect that the 
Arduino is a remote peripheral

setPinMode   :: Word8 -> PinMode -> IO ()
digitalWrite :: Word8 -> Bool -> IO ()
…

do setPinMode 2 OUTPUT
   digitalWrite 2 True
   …
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The Remote Monad Design Pattern

In this remote monad, I/O operations are 
added as monadic Arduino functions 

• This API supports multiple devices 

• The ability to control a specific 
Arduino is now first class 

• send, or the act of creating the 
ArduinoConnection, can enforce 
initialization 

• The API reflects that the Arduino is a 
remote peripheral

send        :: ArduinoConnection -> 
         Arduino a -> IO a

setPinMode   :: Word8 -> PinMode -> Arduino ()
digitalWrite :: Word8 -> Bool -> Arduino ()
…
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send conn (setPinMode 2 OUTPUT)

send conn (digitalWrite 2 True)

If you want to change the pin mode:

If you want to write an output to the pin:



The Key Remote Monad Idea
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send conn (setPinMode 2 OUTPUT)

send conn (digitalWrite 2 True)

If you want to change the pin mode:

If you want to write an output to the pin:

send conn (setPinMode 2 OUTPUT >> digitalWrite 2 True)

If you want to change the pin mode and write output to the pin

Can we bundle setPinMode and digitalWrite into a single transaction?



Returning Remote Results
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• The monadic commands inside send are executed in a remote location 
• The results of those executions need to be made available for use locally

send conn $ do
      input <- digitalRead 3
      digitalWrite 2 (not input)

send        :: ArduinoConnection -> Arduino a -> IO a
setPinMode    :: Word8 -> PinMode -> Arduino ()
digitalWrite  :: Word8 -> Arduino ()
digitalRead   :: Word8 -> Arduino Bool

res <- send conn (digitalRead 3)

Using result inside Arduino

Returning remote result



• send is a natural transformation from a remote effect to a local effect 

• The laws give us the freedom to choose bundling strategy

Remote Monad Laws

sendc :: forall a . Remote a -> Local a

sendc (return a) = return a
sendc (m >>= k)  = sendc m >>= sendc . k

Use the monad-transformer lift laws, also known as the monad 
homomorphism laws. 



The Command Design Pattern
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data Command = 
  SetPinMode Word8 PinMode
| DigitalWrite Word8 Bool
    deriving Show

digitalWrite :: Word8 -> Bool -> Arduino ()
digitalWrite p v = Command $ DigitalWrite p v

send :: ArduinoConnection -> Command -> IO ()
send conn cmd = do
  packCmd <- packageCommand cmd

sendToArduino conn packCmd

GHCi> send conn (digitalWrite 2 True)
Arduino: LED on pin 2 turns on

A remote command is a request to perform an action for remote effect, 
where there is no result value



The Command Design Pattern
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GHCi send Command

send Digital
Write

DigitalWrite encoded
with Serial Protocol

()

GHCi> send conn (digitalWrite 2 True)
Arduino: LED on pin 2 turns on



Remote Procedures
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data Procedure :: * -> * where
  DigitalRead :: Word8 -> Procedure Bool
  DelayMillis :: Word32 -> Procedure ()

send :: ArduinoConnection -> Procedure a -> IO a
send conn p = do

packP <- packageProcedure p
sendToArduino conn packP
rsp <- waitResponse conn p
return rap

GHCi> send conn DigitalRead 3

A remote procedure is a request to perform an action for its remote 
effects, where there is a result value or temporal consequence



Remote Procedures
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GHCi send Procedure

DigitalRead
DigitalRead encoded
with Serial Protocol

Button State of “False”
encoded with Serial Protocol

False

send

False

GHCi> send conn DigitalRead 3



The Weak Remote Monad
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A weak remote monad is a remote monad that sends each of its 
remote calls individually to a remote interpreter
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GHCi send Remote

digitalRead 2 Encoded DigitalRead 2

Encoded True

send

()

True

Encoded DigitialWrite 4 False

digitalWrite 4 False
()

()

delayMillis

()

Encoded DelayMillis 100

Encoded ()

digitalWrite 3 True Encoded DigitialWrite 3 True 

send conn $ do
         x <- digitalRead button
         digitalWrite led1 x
         digitalWrite led2 (not x)
         delayMillis 100



The Strong Remote Monad
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A strong remote monad is a remote monad that bundles all of its 
remote calls into packets of commands, punctuated by procedures, 
for remote execution

14

GHCi send Remote

digitalRead 2 Encoded DigitalRead 2

Encoded True

send

()

True

digitalWrite 4 False
()

()

delayMillis 100

()

Encoded [DigitalWrite 3 True
DigitalWrite 4 False

DelayMillis 100]

Encoded ()

digitalWrite 3 True

send conn $ do
         x <- digitalRead button
         digitalWrite led1 x
         digitalWrite led2 (not x)
         delayMillis 100



Weak, Strong, and EDSL 
Versions

• Levent Erkök’s hArduino package is an example of 
a weak remote monad, this was our starting point. 

• The first version of Haskino extended hArduino by 
applying the strong remote monad concepts, to 
increase communications efficiency through 
bundling. 

• To develop our second method of allowing stand-
alone Arduino execution, required a deep 
embedding.



EDSL Modifications
• Add Expressions to the language. 

• Add remote storage of computation results. 

• Add Conditionals to the language 

• Replace the Arduino firmware (which was called 
Firmata in hArduino and the initial version of Haskino). 

• Allows the firmware to handle interaction with an 
EDSL and optimizes communication.



Adding Expressions
The tethered Strong Remote Haskino uses commands and 
procedures such as:

digitalWrite :: Word8 -> Bool -> Arduino ()
analogRead :: Word8 -> Arduino Word16

To move to the deeply embedded version, we instead use:
digitalWriteE :: Expr Word8 -> Expr Bool ->
                 Arduino ()
analogReadE :: Expr Word8 -> 
                 Arduino (Expr Word16)

Strong commands may be written in terms of Deep ones, i.e.:

digitalWrite p b = 
digitalWriteE (lit p) (lit b)



Expression Types
The Haskino EDSL provides Expr a parameterized over the 
following types:

• Word8

• Word16

• Word32

• Int8

• Int16

• Int32

• Bool

• Float

• [Word8]

• Numeric operations include addition, subtraction, division, 
multiplications, comparisons, and conversion between numeric types. 

• Boolean operations include not, and, and or. 

• Integer operations include standard bitwise operations. 

• [Word8] operations include append and element retrieval.



Remote Refs/Conditionals
class RemoteReference a where
    newRemoteRef    :: Expr a -> Arduino (RemoteRef a)
    readRemoteRef   :: RemoteRef a -> Arduino (Expr a)
    writeRemoteRef  :: RemoteRef a -> Expr a ->

                Arduino ()
    modifyRemoteRef :: RemoteRef a -> 

               (Expr a -> Expr a) -> 
                       Arduino ()

ifThenElse :: Expr Bool ->         -- If expression
              Arduino () ->        -- Then clause
              Arduino () ->        -- Else clause
              Arduino ()
while :: RemoteRef a ->            -- Loop Reference
         (Expr a -> Expr Bool) ->  -- Termination Test
         (Expr a -> Expr a) ->     -- Update Function
         Arduino () ->             -- Loop Body
         Arduino ()
loopE :: Arduino () ->             -- Loop Body
         Arudino ()
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Firmata ->  
Haskino Firmware

• The firmware and serial communication protocol used with 
hArduino is Firmata. 

• Firmata is based on MIDI, and has a strange, inefficient  7 bit 
encoding. 

• Digital and Analog Reads are done via a continuous update 
mechanism in Firmata, which would not fit well with the Haskino 
architecture. 

• Extending Firmata to handle expressions and conditions would 
have been very difficult. 

• Instead, a new Haskino protocol and firmware were developed.



Strong Haskino Example 
example :: IO ()
example = 
     withArduino False "/dev/cu.usbmodem1421" $ do
          let button = 2
          let led1 = 6
          let led2 = 7
          setPinMode button INPUT
          setPinMode led1 OUTPUT
          setPinMode led2 OUTPUT
          loop $ do 
               x <- digitalRead button
               digitalWrite led1 x
               digitalWrite led2 (not x)
               delayMillis 100 



Deep Haskino Example 
exampleE :: IO ()
exampleE = 
     withArduino False "/dev/cu.usbmodem1421" $ do
           let button = 2
           let led1 = 6
           let led2 = 7
           setPinModeE button INPUT
           setPinModeE led1 OUTPUT
           setPinModeE led2 OUTPUT
           loopE $ do 
                ex <- digitalReadE button
                digitalWriteE led1 ex
                digitalWriteE led2 (notB ex)
                delayMillisE 100 



Cutting the Cord 

• The firmware includes the notion of tasks, which are a 
monadic structure which can be scheduled to execute at a 
future time. 

• These tasks are created using a createTaskE command 
which takes an Arduino () monad as a argument. 

• Additionally, a bootTaskE command allows one task to be 
stored in the Arduino’s EEPROM. 

• If the firmware finds a task stored in EEPROM upon boot, it 
will execute that task at startup, which provides our desired 
ability to execute a program written in Haskell stand-alone.



Comparison of Strong and 
Deep Versions



A Larger Example



Conclusion
• Haskino provides two complimentary methods of using Haskell as a 

development environment for Haskell software 
• Strong remote monad provides a method for quick prototyping in a 

tethered environment. 
• Deep version of Haskino allows the programmer to bring the full 

power of Haskell to developing standalone software for the Arduino 
• Future work 

• Add a third method of development, directly generating C code from 
the Arduino monad. 

• We want to extend the scheduling mechanism in Haskino to allow for 
interrupt processing and inter-task communication. 

• We want to explore using HERMIT to semi-automatically translate 
programs written in the tethered strong version into programs written 
using deep embedding.



github.com/ku-fpg/haskino


