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Abstract. Programming embedded microcontrollers often requires the
scheduling of independent threads of execution, specifying the
interaction and sequencing of actions in the multiple threads. Developing
and debugging such multi-threaded systems can be especially
challenging in highly resource constrained systems such as the Arduino
line of microcontroller boards. The Haskino library, developed at the
University of Kansas, allows programmers to develop code for
Arduino-based microcontrollers using monadic Haskell program
fragments. This paper describes our efforts to extend the Haskino
library to translate monadic Haskell code to multi-threaded code
executing on Arduino boards.
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1 Introduction

The Haskino library was written to advance the use of Haskell to program sys-
tems based on the Arduino line of micocontrollers. Software written for em-
bedded microcontrollers routinely requires multiple threads of execution to ef-
ficiently and easily meet its requirements. The previous version of Haskino [1]
supported only single threaded, run to completion style programming. We have
since extended Haskino to support multi-threaded, concurrent operation.

In this paper, we discuss the following.

– We describe enhancements to the Haskino DSL and expression language,
which allow for control of a wider variety of Arduino interfaces, such as I2C
and character output devices.

– We discuss how the Haskino interpreter has been enhanced with the ability
to write multi-threaded programs which are cooperatively scheduled, and
allow inter-thread communication.

– We describe the new Haskino code generator, which allows programmers to
write native Haskell, yet have that Haskell compiled to a Arduino binary for
execution on the Arduino.

– We explain the additions that have been made to Haskino to support quick
prototyping and easy debugging of multi-threaded programs.

– We then instantiate these ideas into a number of concrete examples.



1.1 Background

The Haskino library has its roots in the hArduino package [2], written by Levent
Erkök, which allows programmers to control Arduino boards through a serial
connection. In hArduino, the serial protocol used between the host computer
and the Arduino, and the firmware which runs on the Arduino, are together
known as Firmata [3].

The evolution of Arduino and Haskell libraries is presented in Table 1. The
previous version of Haskino extended hArduino by applying the concepts of the
strong remote monad design pattern [4] to provide a more efficient way of com-
municating and generalized the controls over the remote execution. In addition,
it added a deep embedding, control structures, an expression language, and a
redesigned firmware interpreter to enable standalone software for the Arduino to
be developed using Haskell. Although neither version of the Haskino byte code
language executed by the interpreter on the Arduino yet contains support for
lambdas, functions may be written in the Haskell host code.

The remote monad design pattern splits primitives to be executed on the
remote Arduino into commands and procedures. Commands are primitives that
do not return a result, and do not have a temporal consequence, such as executing
a delay. Procedures are remote primitives that do return a result, or do have a
temporal consequence. The remote monad design pattern then uses bundling
strategies to combine the commands and procedures efficiently, as they are sent
to the remote Arduino.

The current version of Haskino expands the capabilities of Haskino even fur-
ther. It moves beyond single threaded operation, adding cooperatively scheduled
multi-threaded operation. In addition, programming the Arduino with Haskino
is no longer limited to interpreted operation. The current version of Haskino is
able to take the same monadic code that may be run with the interpreter, and
compile it into C code. That C code may then be compiled and linked with a
small runtime, to allow standalone operation of an executable with a smaller size
than the interpreted code.

hArduino Previous Current

Haskino Haskino

Remote Monad Type Weak Strong Strong

DSL Embedding Shallow Shallow/Deep Shallow/Deep

Firmware/ Firmata Haskino Haskino
Protocol Interpreter Interpreter/Runtime

Interpreted/ Interpreted Interpreted Interpreted/
Compiled Compiled

Threading Single Single Multi-
Threaded Threaded Threaded

Table 1. Haskell and Arduino Evolution



1.2 Arduino Remote Monad

The current version of Haskino uses the remote-monad library developed at the
University of Kansas [5] to define the Haskino remote monad. The Arduino type
is defined as follows:

newtype Arduino a =

Arduino (RemoteMonad ArduinoCommand ArduinoProcedure a)

deriving (Functor, Applicative, Monad)

The data types for commands and procedures in Haskino are defined as
GADTs. ArduinoCommand and ArduinoProcedure data types are shown below,
with a subset of their actual constructors as examples.

data ArduinoCommand =

SetPinModeE (Expr Word8) (Expr Word8)

| DigitalWriteE (Expr Word8) (Expr Bool)

| AnalogWriteE (Expr Word8) (Expr Word16)

data ArduinoProcedure :: * -> * where

MillisE :: ArduinoProcedure (Expr Word32)

DelayMillisE :: Expr Word32 -> ArduinoProcedure ()

DelayMicrosE :: Expr Word32 -> ArduinoProcedure ()

DigitalReadE :: Expr Word8 -> ArduinoProcedure (Expr Bool)

AnalogReadE :: Expr Word8 -> ArduinoProcedure (Expr Word16)

API functions which are exposed to the programmer are defined in terms of
these constructors, as shown for the example of digitalWriteE below:

digitalWriteE :: Expr Word8 -> Expr Bool -> Arduino ()

digitalWriteE p b = Arduino $ command $ DigitalWriteE p b

The function used to run a remote monad is called send by convention, and
Haskino makes use of the remote-monad libraries functions to implement its
send function. The send function transforms the Arduino remote monad into a
byte stream which will be sent to the remote Arduino board. send takes as a
parameter an ArduinoConnection data structure, which specifies the Arduino to
send the remote monad. The ArduinoConnection data structure is returned by
the openArduino function, which takes a boolen to indicate if debugging should
be enabled, and the path the serial port where the Arduino board is connected.

openArduino :: Bool -> FilePath -> IO ArduinoConnection

send :: ArduinoConnection -> Arduino a -> IO a

send c (Arduino m) = (run $ runMonad $ nat (runAP c)) m



1.3 Haskino Expression Language

The previous deep embedding of the Haskino DSL and interpreter provided
the capability to handle typed expressions of boolean and unsigned integers of
length 8, 16 and 32 bits. This covered the types used by the basic digital and
analog input and output functions in the Arduino API. The Data.Boolean [6]
package was used so that operators used in expressions may be written in same
manner that operations on similar data types are written in native Haskell. The
exception is for operations on booleans, in which case the operators have an
appended asterisk, such as >* for greater than.

However, to extend the DSL for more complex libraries such as the step-
per motor, servo motor, and I2C libraries, the handling of signed types, floating
points, and lists of unsigned 8 bit words has been added to the Haskino DSL
expression language. In addition to adding float data types and their basic opera-
tions, the expression language was also expanded to include most of the standard
math library primitives, including trigonometric functions. Primitives to convert
between numeric data types, including toInteger, fromInteger, trunc, round, frac,
ceil, and floor have also been added.

Handling reads and writes from I2C devices, as well as displaying text on
LCD and other displays, requires the ability to handle a type for a collection of
bytes. As Haskino is a Haskell DSL, the intuitive choice for the collection is a list
of Word8. In the new version, Haskino’s expression language has been enhanced
with primitives for cons, append, length, and element operations on expressions
of [Word8]. In addition, show primitives have been added to convert other types
into lists of Word8.

2 Haskino Threads

The previous version of Haskino inherited it’s concept of threads from Firmata
tasks. Tasks in Firmata are sequences of commands which can be executed at a
future time. However, as they have no way to store results from one procedure
for use in another command or procedure, the usefulness of these tasks is severely
limited.

The initial version of Haskino extended the ability of tasks, allocating remote
binds to store the results of a procedure and use the result in a subsequent
command or procedure. It was, however, still limited to running a single task to
completion.

We have subsequently extended Haskino to allow it to handle multiple threads
of execution, with communication between the threads, and cooperative multi-
tasking.

As an example of multiple threads running in a Haskino program, we present
the following program.

blinkDelay :: Expr Word32

blinkDelay = 125



taskDelay :: Expr Word32

taskDelay = 2000

semId :: Expr Word8

semId = 0

myTask1 :: Expr Word8 -> Arduino ()

myTask1 led = do

setPinModeE led OUTPUT

i <- newRemoteRef $ lit (0 :: Word8)

loopE $ do

takeSemE semId

writeRemoteRef i 0

while i (\x -> x <* 3) (\x -> x + 1) $ do

digitalWriteE led true

delayMillisE blinkDelay

digitalWriteE led false

delayMillisE blinkDelay

myTask2 :: Arduino ()

myTask2 = do

loopCount <- newRemoteRef $ lit (0 :: Word8)

loopE $ do

giveSemE semId

t <- readRemoteRef loopCount

writeRemoteRef loopCount $ t+1

debugE $ showE t

delayMillisE taskDelay

initExample :: Arduino ()

initExample = do

let led = 13

createTaskE 1 $ myTask1 led

createTaskE 2 myTask2

scheduleTaskE 1 1000

scheduleTaskE 2 1050

semExample :: IO ()

semExample = withArduino True "/dev/cu.usbmodem1421" $ do

initExample

This example creates two tasks. The first task, myTask1, sets the mode of the
LED pin to output, then goes into an infinite loop. Inside the loop, it takes a
semaphore, and when the semaphore is available it blinks the LED rapidly three
times. The second task, myTask2, executes an infinite loop where it gives the
semaphore, then delays for two seconds. The main function, semExample, creates



the two tasks and schedules them to execute, using the Arduino connected to
the specified serial port.

3 Scheduling the Interpreter

The Haskino firmware interpreter runs byte code on the Arduino, the byte code
having been generated on the host and transmitted to Arduino using the remote
monad function send. To enable scheduling in Haskino, the Haskino firmware
interpreter required modification to allow another task to run when the currently
executing task was suspended due to a delay or a wait on a resource. The sched-
uler in the Firmata firmware only ran tasks to completion, so no interruption
and resumption of tasks was allowed. The scheduler in the initial version of the
Haskino interpreter was modeled after that scheduler, and therefore was limited
to run to completion tasks as well.

Haskino defines four conditional structures, an If-Then-Else structure, a
While structure, an infinite LoopE structure, and a ForIn structure (which allows
a computation to be mapped over a list of 8 bit words). Each of these structures
contains the concept of execution of basic code blocks within the interpreter.

To allow the scheduler to interrupt execution of a basic block in a task, and
then later restore execution when the task resumes, a method for saving and
restoring the execution state of the task is required. In an operating system, this
is normally done by saving and restoring the processor’s registers, as well as giv-
ing each thread its own stack. In the Haskino interpreter, each task has it’s own
context, which provides the storage for the bound variables. This corresponds
to the separate stack for each thread in a traditional operating system.

In addition, the interpreter must also store information in the context which
indicates where in the basic block execution of the task was interrupted, such
that it may be restored when the task resumes. For all of the control structures
containing basic blocks, the location (in bytes from the start of the block) of
the command or procedure that was executing when the interruption occurred
is stored. For the simplest of the control structures, ForE and While, this is all
that is required. The other two control structures require an additional piece
of information to be stored. The If-Then-Else structure requires storing which
branch code block was being executed, either the Then branch or the Else branch.
The ForIn structure requires storing an index indicating which element of the
list the code block was being executed for.

As the Haskino control structures may be nested, the scheduler is required
to keep track of not just the state of execution in one basic block, but instead
must track the state of execution in a stack of basic blocks leading up to the
point that code execution was suspended. When the task is later resumed, the
interpreter must walk that stack in reverse order, restoring the state of the task
for each of the other nested basic blocks.

Currently, there are two procedures which cause the Haskino scheduler to
interrupt the execution of a task, and potentially start execution of another. The
first of these procedures is the delayMillisE command, which will delay a task



for specified number of milliseconds. When the procedure is executed, the state
of current task is saved, and the time when the task should resume execution is
stored in the task’s context. The scheduler then checks if another task is ready
to run, based on its next execution time having passed, or a resource it was
waiting on having become available. If a ready to run task is found, it’s state of
execution is restored by the method previously discussed, and it’s execution is
resumed. A second delay procedure, delayMicrosE, exists for those cases where
the programmer wishes a task to have a short delay without the possibility of
being interrupted. The other procedure which can cause a reschedule is taking
a semaphore, which is described in the following section.

4 Inter-thread communication

Running multiple threads of computation is of limited use if the threads do
not have a method of communicating with each other. To enable communication
and synchronization between tasks, Haskino provides several methods. First, the
RemoteReference class provides atomic storage methods that can be used to pass
data between Haskino tasks. RemoteReference’s provide an API analogous to the
Haskell IORef, allowing a remote reference to be read, written, or modified.

Haskino also provides binary semaphores for synchronization between Hask-
ino tasks. A binary semaphore may be given by one task by issuing the giveSem

procedure, while the task that wants to synchronize with the first task can do so
by issuing the takeSem procedure. When a task issues a takeSem procedure, and
the binary semaphore that it refers to is not available, the task will be suspended.
When another task later makes the semaphore available through a giveSem pro-
cedure, the scheduler will then make the task taking the semaphore ready to run.
If the binary semaphore is available when takeSem is called, the semaphore is
made unavailable. However, the task is not suspended in this case, but continues
operation. In addition, if a task is already waiting on an unavailable semaphore
when another task calls giveSem, the semaphore is left unavailable, but the task
waiting on it is made ready to run.

The inclusion of binary semaphores also enables Haskino to handle another
important aspect of programming embedded systems, the processing of inter-
rupts. In addition to handling multiple tasks, the Arduino monadic structures
may also be attached to handle external Arudino interrupts. For example, the
following example uses a simple interrupt handler which gives a semaphore to
communicate with a task. It is similar to our earlier two task example, but
in this case, the interrupt handling task is attached to the interrupt using the
attachIntE command, which specifies the pin of the interrupt to attach to.

blinkDelay :: Expr Word32

blinkDelay = 125

semId :: Expr Word8

semId = 0



myTask :: Expr Word8 -> Arduino ()

myTask led =

loopE $ do

takeSemE semId

digitalWriteE led true

delayMillisE blinkDelay

digitalWriteE led false

delayMillisE blinkDelay

intTask :: Arduino ()

intTask = giveSemE semId

initIntExample :: Arduino ()

initIntExample = do

let led = 13

setPinModeE led OUTPUT

let button = 2

setPinModeE button INPUT

let myTaskId = 1

let intTaskId = 2

createTaskE myTaskId (myTask led)

createTaskE intTaskId intTask

scheduleTaskE myTaskId 50

attachIntE button intTaskId FALLING

intExample :: IO ()

intExample = withArduino True "/dev/cu.usbmodem1421" $ do

initIntExample

5 Code Generation

The interpreted version of the Haskino DSL provides a quick turnaround Arduino
development environment, including features for easy debugging. However, it
has one major disadvantage. The interpreter takes up a large percentage of
the flash program storage space on the smaller capability Arduino boards such
as the Uno. The only other resource on such boards for storing interpreted
programs to be executed when the Arduino is not tethered to a host computer is
EEPROM, which is what the current interpreter uses. However, this resource is
also relatively small (1K byte) on these boards. These storage limitations directly
limit the complexity of programs which can be developed using the interpreted
version of Haskino when not connected to a host computer.

To overcome these limitations, we have developed a compiler that translates
the same Haskell DSL source code used to drive the interpreter, into C code.
The C code may then be compiled and linked with a C based runtime which is



much smaller than the interpreter. The compiler takes as input the same Arduino
monad that is used as input to the withArduino function to run the interpreter,
and the file to write the C code to.

compileProgram :: Arduino () -> FilePath -> IO ()

5.1 Compiler Structure

The compiler processes the monadic code in a similar fashion to the way that
the remote monad send function does for the interpreted version. Instead of
reifying the GADT structures which represent the user programs into Haskino
interpreter byte code, the compiler instead generates C code.

Each task in the program, including the initial task which consists of the code
in the top level monadic structure, is compiled to C code using the compileTask
function. The compileTask function makes use of the compiler’s core function,
compileCodeBlock, to recursively compile the program. The top level code block
for the task, may contain sub-blocks for While, IfThenElse, LoopE, and ForIn
control structures present in the top level block. A State monad is used by the
compiler to track generated task code, tasks which are yet to be compiled as
they are discovered in compilation of other task blocks, and statistics such as
the number of binds per task, which are used for storage allocation as described
in Section 5.4.

data CompileState = CompileState {

level :: Int

, intTask :: Bool

, ix :: Int

, ib :: Int

, cmds :: String

, binds :: String

, refs :: String

, forwards :: String

, cmdList :: [String]

, bindList :: [String]

, tasksToDo :: [(Arduino (), String, Bool)]

, tasksDone :: [String]

, errors :: [String] }

compileTask :: Arduino () -> String -> Bool -> State CompileState ()

compileCodeBlock :: Arduino a -> State CompileState a

Expressions and control structures are compiled into their C equivalents, with
calls to Haskino runtime functions for expression operators that are not present
in the standard Arduino runtime library. ArduinoCommand’s and ArduinoPro-
cedure’s are likewise translated into calls to either the Arduino standard library,
or to the Haskino runtime.



In the following sections, we will explain the C code which is generated by
executing the compileProgram function on the initExample monad from the
semaphore example in Section 2.

5.2 Initialization Code Generation

Arduino programs consist of two main functions, setup(), which performs the
required application initialization, and loop(), which is called continuously in a
loop for the main application. For Haskino applications, any looping is handled
inside of the monadic Haskino code, and the compiled code uses only the setup()
function. The loop() function is left empty, and is only provided to satisfy
the link requirement of the Arduino library. The code generated for Haskino
initialization for this semaphore example follows:

void setup() {

haskinoMemInit();

createTask(255, haskinoMainTcb, HASKINOMAIN_STACK_SIZE,

haskinoMain);

scheduleTask(255, 0);

startScheduler();

}

void loop() {

}

void haskinoMain() {

createTask(1, task1Tcb, TASK1_STACK_SIZE, task1);

createTask(2, task2Tcb, TASK2_STACK_SIZE, task2);

scheduleTask(1,1000);

scheduleTask(2,1050);

taskComplete();

}

The setup() function serves three purposes. First, it initializes the memory
management of the Haskino runtime, which is described in Section 5.6. Second,
it creates the initial root task of the application. The compiler generates the
code associated with the main monadic function passed to compileMonad as the
C function haskinoMain(). The steup() function creates the initial task by
calling createTask(), passing a pointer haskinoMain(), and schedules the task
to start immediately by calling scheduleTask(). Finally, the runtime scheduler,
described in Section 5.5, is started by calling the startScheduler() function.

5.3 Task Code Generation

The monadic code passed in each createTaskE call in the Haskell code is com-
piled into a C function, named taskX(), where X is the task ID number which



is also passed to createTaskE (not the name of the monadic function). As an
example, the code for the first task from the semaphore example is shown below:

void task1() {

pinMode(13,1);

ref1 = 0;

while (1) {

takeSem(0);

ref1 = 0;

for (;(ref1 < 3);ref1 = (ref1 + 1)) {

digitalWrite(13,1);

delayMilliseconds(125);

digitalWrite(13,0);

delayMilliseconds(125);

}

}

taskComplete();

}

5.4 Storage Allocations

Three types of storage are allocated by the compiler. RemoteReference’s are
compiled into global C variables, named refX, where X is the id of the remote
reference. In the example, two Word8 remote references are used, and compila-
tion of their newRemoteRef calls cause the following global allocations in the
generated code (prior to any task functions) :

uint8_t ref0;

uint8_t ref1;

Binds in the Haskino DSL are compiled into local variables, and are therefore
allocated on the stack. The number of binds for each code block is tracked by
the compiler, and the binds are defined local to the code block in which they
are used. They are named similar to remote references, with a name of the form
bindX, where X is the id number of the bind assigned by the compiler. In the
example, there is one Word8 bind in myTask2, used inside of the while loop:

t <- readRemoteRef loopCount

Its allocation as the local variable bind0 may be seen in the following code:

void task2() {

ref0 = 0;

while (1) {

uint8_t bind0;

giveSem(0);



bind0 = ref0;

ref0 = (bind0 + 1);

debug(showWord8(bind0));

delayMilliseconds(2000);

}

taskComplete();

}

The task2() generated code above also demonstrates the initialization of
the RemoteReference ref0 to its initial value, 0, in the first statement of the
generated task. The remote reference ref0 is then incremented in each iteration,
making use of the bind0 bind variable. This code also demonstrates the use of
the debugging features of Haskino (discussed in Section 6 ), by outputting the
loop count contained in bind0, with the debug() call.

Like the tasks in the interpreter, each task in the compiled code requires a
context to track its state. In the compiled code, this context consists of the C
stack, as well as several other state variables, such as the next time the task
should run and a flag indicating if the task is blocked. Together, these make up
the task control block (TCB) for the task, which is the finally type of storage
allocated by the compiler. The compiler allocates space for the task control block
statically, sizing the block based on the size of the fixed elements of the block, a
default amount of stack space to account for Arduino library usage, and finally
stack space for the number of binds used by the task, which the compiler tracks
while generating the code. The following shows the generated code used to define
the TCB for three tasks from the semaphore example.

void haskinoMain();

#define HASKINOMAIN_STACK_SIZE 100

byte haskinoMainTcb[sizeof(TCB) + HASKINOMAIN_STACK_SIZE];

void task2();

#define TASK2_STACK_SIZE 104

byte task2Tcb[sizeof(TCB) + TASK2_STACK_SIZE];

void task1();

#define TASK1_STACK_SIZE 100

byte task1Tcb[sizeof(TCB) + TASK1_STACK_SIZE];

The address of the allocated TCB, as well as the size of the allocated stack
are passed to the task creation calls, as can be seen from the creation call for
task1 shown below:

createTask(1, task1Tcb, TASK1_STACK_SIZE, task1);

5.5 Scheduling the Generated Code

The small Haskino runtime system used with the generated C code needs to du-
plicate the scheduling capabilities of the Haskino interpreter, to allow Haskino



programs to be move seamlessly between the two environments. These capabili-
ties are provided by a small multitasking kernel that is a core part of the runtime.
Like the Haskino interpreter, generated tasks are cooperative, only yielding the
processor at delays and semaphore takes.

The scheduling algorithm used is a simple cooperative algorithm. Since the
number of tasks expected is relatively small, a separate ready list is not used.
Instead, each time the scheduler is run when a task yields the processor, the
list of all tasks is scanned starting at the task after the yielding task for a task
whose next time to run is less than or equal to the current time, and is not
blocked. Starting the list search at the next task after the yielding task ensures
that scheduling will occur in a round robin sequence of the ready tasks, even if
each tasks yields with a delayMilliseconds(0).

The compiler inserts a taskComplete() call at the end of each generated
task. If the task ever reaches this call, it will mark the task as blocked so that
it will no longer run. As task control blocks are allocated statically, the task
control block memory is not freed.

5.6 Dynamic Memory Management

Both the Haskino interpreter, and the compiler require some form of dynamic
memory management to handle the Word8 list expressions which are used in the
Haskino expression language for strings and byte array data such as I2C input
and output (discussed in Section 1.3). In both cases the garbage collection scheme
is simple, with memory elements being freed when an associated reference count
for the element goes to zero. The interpreter uses the standard libc memory
routines malloc() and free(), which allocates space from the heap.

The libc heap allocation scheme was not practical for use with the generated
thread code. With the standard Arduino libc memory management, the pro-
gram’s stack grows down from the top of memory, while the heap grows up from
the bottom of available memory. The malloc() routine includes a test to make
sure that the new memory allocation will not cause the heap to grow above the
stack pointer. While this will work with the interpreter, the compiler statically
allocates the stack for each of the tasks, and the stack pointer for all of the tasks
would then be below the heap, causing any memory allocation to fail.

One possible solution to this issue that was considered was to rewrite the
Arduino memory management library to remove the heap/stack collision detec-
tion, so that it would be usable with multiple stacks. Instead, to improve speed
and determinism of the memory allocation and garage collection in the compiled
code, a fixed block allocation scheme was instead chosen. Through a library
header file, the programmer is able to choose the number of 16, 32, 64, 128 and
256 byte blocks available for allocation. The runtime then keeps a linked list of
the free blocks for each block size, and the memory allocator simple returns the
head of the free list of the smallest block size larger the the requested size. If no
blocks of that size are available, then the next larger free list is tried until a free
block is found, or until the allocation fails.



6 Debugging

The previous version of the Haskino DSL provided rudimentary debugging ca-
pabilities through a debug local which made use of host Haskell show functions:

debug :: String -> Arduino ()

However, since the debug parameters were evaluated locally on the host, not
in the Haskino interpreter, it could not be used for debugging intermediate results
within deeply embedded conditionals or loops, or for debugging within tasks. The
current version of the Haskino DSL instead includes a debugE Procedure whose
expression parameters are evaluated on the Arduino:

debugE :: Expr [Word8] -> Arduino ()

The evaluated expression is returned to the host via the Haskino protocol,
and the message displayed on the host console. It can make use of the show
primitives added to the expression language to display the values of remote
references or remote binds.

An additional procedure was also added to the DSL language, debugLis-
ten, which keeps the communication channel open listening for debug messages.
This was required as the channel is normally closed after the last command or
procedure has been sent. If the last command is a loop or task scheduling, this
procedure may be used to ensure that debug messages are received and displayed
on the host while the loop or task executes on the Arduino.

One of the key features of Haskino is that the same monadic code may be
used for both interpreted and compiled versions. This allows for quick proto-
typing with the tethered, interpreted version, and then compiling the code for
deployment. This duality of environments is supported with the debugging prim-
itives as well. When compiled, the debugE procedure will output the evaluated
byte list to the serial port, allowing the same debug output displayed by the
interpreted version to be used in debugging the compiled version as well.

7 Examples

To better illustrate the utility of the Haskino system with a multithreading
program, we present two slightly more complex examples. The first example
demonstrates using Haskino to program multiple tasks with asynchronous tim-
ing relationships. The second example demonstrates using tasks to simplify a
program which would otherwise require hardware status busy waiting.

7.1 Multiple LED Example

In this first example, an Arduino board has multiple LED lights connected to it
(in the example code below, three lights), and each of these lights are required
to blink at a different, constant rate.



The basic monadic function for blinking a LED is defined as ledTask, which
is parameterized over the pin number the LED is connected to, and the amount
of time in milliseconds the LED should be on and off for each cycle. This func-
tion sets the specified pin to output mode, then enters an infinite loop turning
the LED on, delaying the specified time, turning the LED off, and then again
delaying the specified time.

ledTask :: Expr Word8 -> Expr Word32 -> Arduino ()

ledTask led delay = do

setPinModeE led OUTPUT

loopE $ do

digitalWriteE led true

delayMillisE delay

digitalWriteE led false

delayMillisE delay

The main function of the program, initExample, creates three Hakino tasks,
each with a different LED pin number, and a different delay rate. The three
created tasks are then scheduled to start at a time in the future that is twice
their delay time. The task with an ID of 1 will be the first to run, as it is scheduled
to start at the nearest time in the future (1000 ms). It will run until it reaches
its first call to delayMillisE. At that point, the scheduler will be called. The
scheduler will reschedule task 1 to start again in 500ms, and as no other tasks
will yet be started at that time, then call the Arduino delay() function with
the same time delay. When the delay() function returns, task 1 will be the only
task ready to run, so it will run again until it reaches the second delayMillisE

call, when the scheduler will be called and will call delay() as before. When
delay() returns the second time, both task 1 and task 2 will be ready to run.
Since task 1 was the last to run, the scheduler will search the task list starting
at the task after task 1, and will find task 2 ready to run, and it will be started.
Task 2 will run until it reaches the delay, at which point the scheduler will be
called, and it will restart task 1 since it was also ready to run. This process will
continue, with each task running (turning it’s LED on or off) until it reaches a
delay, at which point it will cooperatively give up its control of the processor
and allow another task to run.

initExample :: Arduino ()

initExample = do

let led1 = 6

let led2 = 7

let led3 = 8

createTaskE 1 $ ledTask led1 500

createTaskE 2 $ ledTask led2 1000

createTaskE 3 $ ledTask led3 2000

scheduleTaskE 1 1000

scheduleTaskE 2 2000

scheduleTaskE 3 4000



The final two functions in the example, ledExample and compile are used to
run the initExample monad with the interpreter and compiler respectively.

ledExample :: IO ()

ledExample = withArduino True "/dev/cu.usbmodem1421" $ do

initExample

compile :: IO ()

compile = compileProgram initExample "multiLED.ino"

This example demonstrates the ability to write a program where using multi-
ple threads to implement concurrency greatly simplifies the task. This code could
have been written with straight inline code, but would require calculating the
interleaving of the delays for the various LED’s. However, in that straight line
code, it would be more difficult to expand the number of LEDs, or to handle stag-
gered start times. Both of those cases are easily handled by the multithreaded
code, and the amount of code is also smaller in the multithreaded case, since the
ledTask function is reused.

7.2 LCD Counter Example

In the second example, an Arduino board has an LCD display shield attached,
which also has a set of six buttons (up, down, left, right, select, and enter).
The buttons are all connected to one pin, and the analog value read from the
pin determines which button is pressed. The example will display a signed in-
teger counter value on the LCD display, starting with a counter value of zero.
If the user presses the up button, the counter value will be incremented and
displayed. Similarly, if the user presses the down button the counter value will
be decremented and displayed.

The main function of the program, lcdCounterTaskInit, creates two Hask-
ino tasks, one for reading the button, and another for updating the display. It
also creates a remote reference which will be used for communicating the button
press value between the tasks.

lcdCounterTaskInit :: Arduino ()

lcdCounterTaskInit = do

let button = 0

setPinModeE button INPUT

taskRef <- newRemoteRef $ lit (0::Word16)

createTaskE 1 $ mainTask taskRef

createTaskE 2 $ keyTask taskRef button

-- Schedule the tasks to start immediately

scheduleTaskE 1 0

scheduleTaskE 2 0

The key task waits for a button press, reading the analog value from the
button input pin until it is less than 760 (A value greater than 760 indicates that



no button is pressed). The value read from the pin, which indicates which button
was pressed, is stored in the remote reference used to communicate between
tasks. At this point, the semaphore is given by the task. It then waits for the
button to be released, and repeats the loop.

keyTask :: RemoteRef Word16 -> Expr Word8 -> Arduino ()

keyTask ref button = do

let readButton :: RemoteRef Word16 -> Arduino ()

readButton r = do

val <- analogReadE button

writeRemoteRef r val

releaseRef <- newRemoteRef $ lit (0::Word16)

loopE $ do

writeRemoteRef ref 760

-- wait for key press

while ref (\x -> x >=* 760) id $ do

readButton ref

delayMillisE 50

giveSemE semId

writeRemoteRef releaseRef 0

-- wait for key release

while releaseRef (\x -> x <* 760) id $ do

readButton releaseRef

delayMillisE 50

The main task sets up the LCD (with the lcdRegiserE call), and creates a
remote reference which will track the counter value. It thens turns on the LCD
backlight, and writes the initial counter value to the display. It then enters the
main loop, waiting for the the key task to give the semaphore. When it receives
the sempahore, it reads the key value from the remote reference. Based on the
value, it either increments the counter, decrements the counter, or does nothing.
The counter value is then read from the remote reference and the display is
updated with its value.

mainTask :: RemoteRef Word16 -> Arduino ()

mainTask ref = do

lcd <- lcdRegisterE osepp

let zero :: Expr Int32

zero = 0

cref <- newRemoteRef zero

lcdBacklightOnE lcd

lcdWriteE lcd $ showE zero

loopE $ do

takeSemE semId

key <- readRemoteRef ref

debugE $ showE key



ifThenElse (key >=* 30 &&* key <* 150)

(modifyRemoteRef cref (\x -> x + 1)) (return ())

ifThenElse (key >=* 150 &&* key <* 360)

(modifyRemoteRef cref (\x -> x - 1)) (return ())

count <- readRemoteRef cref

lcdClearE lcd

lcdHomeE lcd

lcdWriteE lcd $ showE count

This second example has demonstrated using a remote reference in conjunc-
tion with a semaphore to communicate between Haskino tasks.

8 Comparing Interpreted and Compiled Size

We have stated that the Haskino compiler makes more efficient use of the small
amount of storage space available on the Arduino Uno boards than does the
Haskino intepreter. Table 2 shows the amount of space used by both the Haskino
interpreter, and the runtime used by the compiler, without any user program
present. Both the raw size, and the percentage of the available resource are
shown.

Haskino Haskino

Interpreter Runtime

Flash Size 31124 bytes 3052 bytes

RAM Size 901 bytes 437 bytes

Uno Flash Usage 95.0% 9.3%

Uno RAM Usage 44.0% 21.3%
Table 2. Interpreter and Runtime Storage Sizing with no user program

Table 3 shows the percentage of available Uno Flash and RAM used by the
example programs from Section 7.1 (Example 1) and Section 7.2 (Example 2).
The number of buffers available for dynamic memory management in the runtime
is user configurable. The unoptimized numbers for the runtime reflect the default
allocation, where the optimize reflect values customized for the specific program.

Note that for Example 2, the LCD Counter example, the RAM requirements
for the interpreted version of the program exceeds the memory available on a
Uno board, due to the size of the generated byte code for the tasks. This program
was tested using an Arduino Mega 2560 board which has 8 Kbytes of RAM, as
opposed to the Uno’s 2 Kbytes. However, the compiled version fits comfortably
within the Uno’s 32 Kbytes of flash, and 2 Kbytes of RAM.

While the size of the interpreter means that large programs may not be
implemented with it in their entirety, it may still be used to prototype and debug
smaller portions of more complicated programs. For example, it may be used to



Haskino Haskino

Interpreter Runtime

Example 1 Flash Usage 95.0% 14.5%

Example 1 Unoptimized RAM Usage 56.9% 70.8%

Example 1 Optimized RAM Usage - 45.0%

Example 2 Flash Usage 95.0% 30.4%

Example 2 Unoptimized RAM Usage 151.6% 70.8%

Example 2 Optimized RAM Usage - 47.9%

Table 3. Interpreter and Runtime Storage Sizing for Example Programs

prototype code for interfacing to new hardware, where the hardware interface
may not be well understood. Once the interface section is prototyped with the
interpreter, the entire program may then be developed with the compiler.

9 Related Work

There is other ongoing work on using functional languages to program embedded
systems in general, and the Arduino in specific. A shallowly embedded DSL
for programming the Arduino in the Clean language, called ArDSL has been
developed [7]. Their work does not make use of the remote monad design pattern,
and does not provide a tethered, interpreted mode of operation.

The Ivory language [8][9] provides a deeply embedded DSL for use in pro-
gramming high assurance systems. It also does not make use of the strong remote
monad design pattern, and generates C rather than use a remote interpreter. An
additional EDSL built on top of Ivory, called Tower [8], provides the ability to
define tasking for multithreaded systems. However, it depends on the support of
an underlying RTOS, as opposed to the minimal scheduler of Haskino.

The frp-arduino [10] provides a method of programming the Arduino using
Haskell, but using a functional reactive programming paradigm, and once again
only compiling to C code.

10 Conclusion and Future Work

Many programs for embedded systems are more efficiently implemented with
multiple threads of execution. The Haskino interpreter has been updated to
allow development of multithreaded software written in Haskell for the Arduino
line of embedded development boards. The updated scheduler for the Haskino
interpreter provides cooperative scheduling between tasks, as well as intertask
communication.

To overcome the limitation on program size due to limited Arduino resources
and the size of the Haskino interpreter, a complimentary compiler has been
developed that is able to compile the same monadic Haskell code used by the
interpreter into C code. The C code only requires a small runtime library, and



takes up much less of the limited storage resources, allowing more complicated
programs to be developed.

The updated Haskino therefore provides two complimentary ways of develop-
ing multithreaded software in Haskell for the Arduino. The scheduling of multi-
ple threads and inter-thread communication is implemented to work the same in
both the Haskino interpreter and the Haskino runtime, allowing multi-threaded
programs to be tested and debugged using the interpreter, then compiled to an
executable binary for stand alone execution and deployment.

In the future, we also plan on investigating using HERMIT [11] to semi-
automatically translate from programs written in a more functional style, such
as tail recursion instead of loops, to programs written using the deep embed-
ding. This will improve the applicability of the library. We would also like to
expand the scheduler in Haskino, adding priorities and preemption to the cur-
rent cooperative multithreading. Another area of future investigation is the use
of asynchronous programming techniques, such as those currently being used by
the JavaScript community, with Haskino.
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