
Haskino: A Remote Monad for
Programming the Arduino

Mark Grebe and Andy Gill

Information and Telecommunication Technology Center,
The University of Kansas, Lawrence, KS, USA,

first.last@ittc.ku.edu

Abstract. The Haskino library provides a mechanism for programming
the Arduino microcontroller boards in high level, strongly typed Haskell
instead of the low level C language normally used. Haskino builds on pre-
vious libraries for Haskell based Arduino programming by utilizing the
recently developed remote monad design pattern. This paper presents
the design and implementation of the two-level Haskino library. This
first level of Haskino requires communication from the host running the
Haskell program and the target Arduino over a serial link. We then inves-
tigate extending the initial version of the library with a deep embedding
allowing us to cut the cable, and run the Arduino as an independent
system.

Keywords: Haskell, Arduino, Remote Monad, Embedded Systems

1 Introduction

The Arduino line of microcontroller boards provide a versatile, low cost and
popular platform for development of embedded control systems. Arduino boards
have extremely limited resources that make running a high level functional lan-
guage natively on the boards infeasible. Instead, the standard way of developing
software for these systems is to use a C/C++ environment that is distributed
with the boards. This paper documents our efforts to advance the use of Haskell
to program the Arduino systems, starting with executing remote commands over
a tethered serial port, towards supporting complete standalone systems.

To be specific, the most popular Arduino, the Arduino Uno, has a 16MHz
clock rate, 2 KB of RAM, 32 KB of Flash, and 1 KB of EEPROM. This is
cripplingly small by modern standards, but at a few dollars per unit and built-in
A-to-D convertors and PWM support, many projects can be prototyped quickly
and cheaply with careful programming. Using the Arduino itself as a testbed, we
are interested in investigating how Haskell can contribute towards programming
such small devices.

Programming the Arduino is, for the most part, straightforward imperative
programming. There are side-effecting functions for reading and writing pins,
supporting both analog voltages and digital logic. Furthermore, there are li-
braries for protocols like I2C, and controlling peripherals, such as LCD displays.

We want to retain these APIs by providing an Arduino monad, which supports
the low-level Arduino API, and allows programming in Haskell. Ideally, we want
to cross-compile arbitrary Haskell code; the reality is we can get close using
deeply embedded domain specific languages.

1.1 Outline

To make programming an Arduino accessible to functional programmers, we
provide two complementary ways of programming a specific Arduino board.

– First, we provide a way of programming a tethered Arduino board, from
directly inside Haskell, with the Arduino being a remote service. We start
with the work of Levent Erkök, and his hArduino package [1], building on
and generalizing the system by using a more efficient way of communicating,
and generalizing the controls over the remote execution. We discuss this in
Section 4.

– Second, we provide a way of out-sourcing entire groups of commands and
control-flow idioms. This allows a user’s Haskell program to program a board,
then step back and let it run. It is this step – taming any allocation by using
staging – that we want to be better able to understand, and later partially
automate. We discuss this embedding in Section 6.

These two complimentarily ways provide a a gentler way of programming Ar-
duinos, first using an API to prototype an idea, but with the full power of
Haskell, then adjusting control flow and resource usage, to allow the exportation
of the program. Both these methods use the remote monad design pattern [2] to
provide the key capabilities.

In both systems, we build on the Firmata protocol and firmware [3], and
provide a customizable interpreter that runs on the Arduino, written in C. In
section 5 we discuss our runtime system, and compare it to previous works.

Our thesis is that structuring remote services in the manner outlined above
allows for access to productive and powerful capabilities directly in Haskell,
with a useable path to offshoring the entire remote computation. In section 8 we
describe our most recent version of Haskino which extends the second API, and
this is able to create a stored program on the Arduino which will run without
being connected to the host.

2 Programming the Arduino in C

Programming the Arduino in C/C++ consists of defining two top level func-
tions, setup(), which specifies the steps necessary to initialize the program, and
loop(), which defines the main loop of the program. The Arduino environment
provides a base set of APIs for controlling digital and analog input pins on the
board, as well as standard libraries for other standard interfaces such as I2C.

We present the following simple example of programming the Arduino in
C/C++, and we will carry this example through the paper to demonstrate pro-
gramming in several versions of our Haskino environment. This example has one

Fig. 1. Tethered Arduino Uni with Breadboard

digital input from a button, and two LED’s for digital output. When the but-
ton is not pressed, LED1 will be off, and LED2 will be on. When the button is
pressed, their states will be reversed. Figure 1 illustrates an Arduino Uno con-
nected to two LEDs and a button running the example program. The constants
2, 6, and 7 in the program identify the numbers of the Arduino pins to which
the button and LED’s are connected.

int button = 2;

int led1 = 6;

int led2 = 7;

void setup() {

pinMode(button, INPUT);

pinMode(led1, OUTPUT);

pinMode(led2, OUTPUT);

}

void loop() {

int x;

x = digitalRead(button);

digitalWrite(led1, x);

digitalWrite(led2, !x);

delay(100);

}

3 The Remote Monad

A remote monad[2] is a monad that has its evaluation function in a remote
location, outside the local runtime system. The key idea is to have a natural
transformation, often called send, between Remote effect and Local effect.

send :: ∀ a . Remote a → Local a

The Remote monad encodes, via its primitives, the functionality of what
can be done remotely, then the send command can be used to execute the
remote commands. The send command is polymorphic, so it can be used to
run individual commands, for their result, or to batch commands together. For
example, Blank Canvas, our library for accessing HTML5 web-based graphics,
uses the remote monad to provide a batchable remote service. Specifically, three
representative functions from the API are:

send :: Device -> Canvas a -> IO a

lineWidth :: Double -> Canvas ()

isPointInPath :: (Double,Double) -> Canvas Bool

The Canvas is the remote monad, and there are three remote primitives given
here, as well as bind and return. To use the remote monad, we use send:

send device $ do

inside <- isPointInPath (0,0)

lineWidth (if inside then 10 else 2)

The remote monad design pattern splits remote primitives into commands,
where there is no interesting result value or temporal consequence, and proce-
dures, which have a result value or temporal consequence. The design pattern
then proposes different bundling strategies, based on the distinction between
commands and procedures.

A weak remote monad is a remote monad that sends both commands and
procedures one at a time, to be remotely executed. The design pattern is a way of
structuring remote procedure calls, but has no performance advantage. A strong
remote monad, however, bundles together chains of commands, terminated by
an optional procedure, which has the interesting result. There are also other
bundling strategies.

We have built a number of libraries using the remote monad design pat-
tern. Blank Canvas is our Haskell library that provides the complete HTML5
Canvas API, using a strong remote monad that remotely calls JavaScript, and
is fast enough to write small games. We have also built a general JSON-RPC
framework in Haskell. In particular, the JSON-RPC protocol supports multiple
batched calls, as well as individual calls, and our implementation uses monads
and applicative functors to notate batching. We have also reimplemented the
Minecraft API found in mcpi, adding a strong remote monad. We see many
other other applications for the remote monad, beyond the topic of this paper,
a remote Arduino monad.

4 The Arduino Remote Monad

The hArduino package, written by Levent Erkök, allows programmers to control
Arduino boards through a serial connection. The serial protocol used between the
host computer and the Arduino, and the firmware which runs on the Arduino,
are together known as Firmata. Firmata was originally intended as a generic
protocol for controlling microcontrollers from a host computer. It has become
popular in the Arduino community, and programming interfaces for many pro-
gramming languages have been developed for it. The hArduino library, using our
terminology, uses a weak remote monad, and does not have a polymorphic send.
Instead, once send is called, the function never terminates or returns values. This
is our starting point.

Our first step in developing Haskino was to extend the hArduino library using
the strong remote monad design pattern. The monad passed in hArduino repre-
sents the whole computation to be executed, which is then executed piecemeal
by many individual remote calls. In contrast, Haskino’s send function is able
to send one or more commands terminated by a procedure which may return
a value. This bundling of commands increases the efficiency of the communi-
cation, not requiring host interaction until a value is returned from the remote
microcontroller.

With Haskino, to open a connection to an Arduino, openArduino is called
passing a boolean flag for debugging mode, a file path to the serial port, and
returns an ArduinoConnection data structure:

openArduino :: Bool -> FilePath -> IO ArduinoConnection

Once the connection is open, the send function may be called, passing an
Arduino monad representing the computation to be performed remotely, and
possibly returning a result.

send :: ArduinoConnection -> Arduino a -> IO a

The Arduino strong remote monad, like our other remote monad implemen-
tations, contains two types of monadic primitives, commands and procedures.
An example of a command primitive is writing a digital value to a pin on the
Arduino. In the strong version of Haskino, this has the following signature:

digitalWrite :: Pin -> Bool -> Arduino ()

The function takes the pin to write to and the boolean value to write, and
returns a monad which returns unit. An example of a procedure primitive is read-
ing the number of milliseconds since boot from the Arduino. The type signature
of that procedure looks like:

millis :: Arduino Word32

Due to the nature of the Firmata protocol, the initial version of Haskino
required a third type of monadic primitive. The Firmata protocol is not strictly
a command and response protocol. Reads of analog and digital values from the
Arduino are accomplished by issuing a command to start the reading process.
Firmata will then send a message to the host at a set interval with the current
requested value. In hArduino, and the initial version of Haskino, a background
thread is used to read these returned values and store them in a local structure.
To allow monadic computations to include reading of digital and analog values,
the monadic primitive local is defined. A local is treated like a procedure from
a bundling perspective, in that the send function sends any queued commands
when the local is reached. However, unlike the procedure, the local is executed
on the host, returning the digital or analog pin value that was stored by the
background thread. Haskino also makes use of the these local type monadic
primitives to provide a debug mechanism, allowing the language user to insert
debug strings that will be printed when the they are reached during the send
function processing.

The Arduino monad used in Haskino is defined using a GADT:

data Arduino :: * -> * where

Command :: Command -> Arduino ()

Procedure :: Procedure a -> Arduino a

Local :: Local a -> Arduino a

Bind :: Arduino a -> (a -> Arduino b) -> Arduino b

Return :: a -> Arduino a

instance Monad Arduino where

return = Return

(>>=) = Bind

The instance definition for the Monad type class is shown above, but similar
definitions are also defined for the Applicative, Functor, and Monoid type classes
as well. Each of the types of monadic primitives described earlier in this section
is encoded as a sub data type, Command, Procedure, and Local. The data types
for Command, Procedure and Local are shown below, with only a subset of their
actual constructors as examples.

data Command =

DigitalWrite Pin Bool

| AnalogWrite Pin Word16

data Procedure :: * -> * where

Millis :: Procedure Word32

| Micros :: Procedure Word32

data Local :: * -> * where

DigitalRead :: Pin -> Local Bool

| AnalogRead :: Pin -> Local Word16

Finally, the API functions which are exposed to the programmer are defined
in terms of these constructors, as shown for the example of digitalWrite below:

digitalWrite :: Pin -> Bool -> Arduino ()

digitalWrite p b = Command $ DigitalWrite p b

hArduino used the original version of Firmata, known as Standard Firmata.
The initial version of Haskino used a newer version of Firmata, called Config-
urable Firmata, adding the ability to control additional Arduino libraries, such
as I2C, OneWire and others. In addition to providing control of new interfaces,
it introduces a basic scheduling system. Firmata commands are able to be com-
bined into tasks, which then can be executed at a specified time in the future.
Haskino makes use of this capability to specify a monadic computation which
is run at a future time. The strong version is limited in what it can do with
the capability, as it has no concept of storing results of computations on the re-
mote system for later use, or of conditionals. However, we will return to this basic
scheduling capability in Section 5 and Section 6, when we describe enhancements
that are made in our deep version of Haskino.

To demonstrate the use of Haskino, we return to the simple example pre-
sented in Section 2, this time written in the strong version of the Haskino lan-
guage.

example :: IO ()

example = withArduino False "/dev/cu.usbmodem1421" $ do

let button = 2

let led1 = 6

let led2 = 7

setPinMode button INPUT

setPinMode led1 OUTPUT

setPinMode led2 OUTPUT

loop $ do

x <- digitalRead button

digitalWrite led1 x

digitalWrite led2 (not x)

delayMillis 100

This example uses the Haskino convenience function, withArduino, which
calls openArduino , and then calls send with the passed monad:

withArduino :: Bool -> FilePath -> Arduino () -> IO ()

The setPinMode commands configure the Arduino pins for the proper mode,
and will be sent as one sequence by the underlying send function. The loop

primitive is similar to the forever construct in Control.Monad, and executes the
sequence of commands and procedures following it indefinitely. The digitalRead
function is a procedure, so it will be sent individually by the send function. The
two digitalWrite commands following the digitalRead will be bundled with
the delayMillis procedure.

0xfe Payload (Frame) Check-
sum

1
byte 1 to 255 bytes excluding byte-stuffing

1
byte

Payload and Payload checksum are byte-stuffed for 0x7e
 with 0x7d 0x5e, and byte-stuffed for 0x7d with 0x7d 0x5d,

and checksum is over payload only

0xfe

1
byte

Payload
...

Fig. 2. Haskino Framing

5 Haskino Firmware and Protocol

We want to move from sending bundles of commands to our Arduino, to sending
entire control-flow idioms, even whole programs, as large bundles. We do this by
using deep embedding technology, embedding both a small expressing language,
and deeper Arduino primitives.

Specifically, to move Haskino from a straightforward use of the strong remote
monad to a deeper embedding, required extending the protocol used for commu-
nication with the Arduino to handle expressions and conditionals. The Firmata
protocol, while somewhat expandable, would have required extensive changes to
accommodate expressions. Also, since it was developed to be compatible with
MIDI, it uses a 7 bit encoding which added complexity to the implementation
on both the host and Arduino sides of the protocol. As we had no requirement to
maintain MIDI compatibility, we determined that it would be easier to develop
our own protocol specifically for Haskino.

Like Firmata, the Haskino protocol sends frames of data between the host and
Arduino. Commands are sent to the Arduino from the host, with no response
expected. Procedures are sent to the Arduino as a frame, and then the host
waits for a frame from the Arduino in reply to indicated completion, returning
the value from procedure computation.

Instead of 7 bit encoding, the frames are encoded with an HDLC (High-level
Data Link Control) type framing mechanism. Frames are separated by a hex
0x7E frame flag. If a 0x7E appears in the frame data itself, it is replaced by
an escape character (0x7D) followed by a 0x5E. If the escape character appears
in the frame data, it is replaced by a 0x7D 0x5D sequence. The last byte of
the frame before the frame flag is a checksum byte. Currently, this checksum is
an additive checksum, since the error rate on the USB based serial connection
is relatively low, and the cost of a CRC computation on the resource limited
Arduino is relatively high. However, for a noisier, higher error rate environment, a
CRC could easily replace the additive checksum. Figure 2 illustrates the framing
structure used.

The new Haskino protocol also makes another departure from the Firmata
style of handling procedures which input data from the Arduino. With the deep
embedded language being developed, results of one computation may be used in
another computation on the remote Arduino. Therefore, the continuous, periodic

style of receiving digital and analog input data used by Firmata does not make
sense for our application. Instead, digital and analog inputs are requested each
time they are required for a computation. Although, this increases the commu-
nication overhead for the strong remote monad implementation, it enables the
deep implementation, and allows a common protocol to be used by both.

The final design decision required for the protocol was to determine if the
frame size should have a maximum limit. As the memory resources on the Ar-
duino are limited, the frame size of the protocol a maximum frame size of 256
bytes was chosen to minimize the amount of RAM required to store a partially
received frame on the Arduino.

The basic scheduling concept of Firmata was retained in the new protocol
as well. The CreateTask command creates a task structure of a specific size.
The AddToTask command adds monadic commands and procedures to a task.
Multiple AddToTask commands may be used for a task, such that the task size
is not limited by the maximum packet size, but only by the amount of free
memory on the Arduino. The ScheduleTask command specifies the future time
offset to start running a task. Multiple tasks may be defined, and they run till
completion, or until they delay. A delay as the last action in a task causes it to
restart. Commands and procedures within a task message use the same format
as the command sent in a individual frame, however, the command is proceeded
by a byte which specifies the length of the command.

The new protocol was implemented in both Arduino firmware and the strong
remote monad version of the Haskell host software, producing the second version
of Haskino.

6 Deep EDSL

To move towards our end goal of writing an Arduino program in Haskell that
may be run on the Arduino without the need of a host computer and serial
interface, we needed to move from the strong remote monad used in the first
two versions of the library. A deep embedding of the Haskino language allows us
to deal not just with literal values, but with complex expressions, and to define
bindings that are used to retain results of computations remotely.

To accomplish this goal, we have extended the command and procedure
monadic primitives to take expressions as parameters, as opposed to simple val-
ues. For example, the digitalWrite command described earlier now becomes
the digitalWriteE command:

digitalWriteE :: Expr Word8 -> Expr Bool -> Arduino ()

Procedure primitives now also return Expr values, so the millis procedure
described earlier now becomes the millisE procedure defined as:

millisE :: Arduino (Expr Word32)

The Expr data type is used to express arithmetic and logical operations on
both literal values of a data type, as well as results of remote computations of
the same data type. Expr is currently defined over boolean and unsigned integers
of length 8, 16 and 32, as these are the types used by the builtin Arduino API. It
could be easily extended to handle signed types as well. For booleans, the stan-
dard logical operations of not, and, and or are defined. Integer operations include
addition, subtraction, multiplication and division, standard bitwise operations,
and comparison operators which return a boolean. Type classes and type families
are defined using the Data.Boolean [4] package such that operations used in ex-
pressions may be written in same manner that operations on similar data types
are written in native Haskell. For example, the following defines two expressions
of type Word8, and then defines a boolean expression which determines if the
first expression is less than the second.

a :: Expr Word8

a = 4 + 5 * 9

a :: Expr Word8

b = 6 * 7

c :: Expr Bool

c = a <* b

Strong remote monad commands may be defined in terms of their deep coun-
terparts, allowing both to coexist in the deep embedded version. For example:

digitalWrite :: Word8 -> Bool -> Arduino ()

digitalWrite p b = digitalWriteE (lit p) (lit b)

The second component of the deep embedding is the ability to define remote
bindings which allow us to use the results of one remote computation in another.
For this, we define a RemoteReference typeclass, with an API that is similar to
Haskell’s IORef. With this API, remote references may be created and easily
read and written to.

class RemoteReference a where

newRemoteRef :: Expr a -> Arduino (RemoteRef a)

readRemoteRef :: RemoteRef a -> Arduino (Expr a)

writeRemoteRef :: RemoteRef a -> Expr a -> Arduino ()

modifyRemoteRef :: RemoteRef a -> (Expr a -> Expr a) ->

Arduino ()

The final component of the deep embedding is adding conditionals to the
language. Haskino defines three types of conditional monadic structures, an If-
Then-Else structure, and a While structure, and a LoopE structure. The while

structure emulates while loops, and it takes a RemoteRef, a function returning a
boolean expression to determine if the loop terminates, a function which updates

EXPR_WORD8
(0x2 << 5) |
EXPR_REF

(0x01)

Word8 value
 of 4

EXPR_WORD8
(0x2 << 5) |
EXPR_LIT

(0x00)

EXPR_WORD8
(0x2 << 5) |
EXPR_ADD

(0x08)

EXPR_ADD
taske two

expression
arguments

0x48 0x40 0x04

Remote
Reference
Index of 0

0x41 0x00

Full Addition
Expression Operand

Subexpression
Operand

Subexpression

0x41 Check-
sum 0xfe0x48 0x40 0x04 0x41 0x00

analog
Write

Comand

analogWrite
Command Frame Parameter

Expression

Addition
Expression

analogWrite
with

Addition
Expression

Fig. 3. Example of Expression Encoding

the remote reference at the end of each loop, and a Arduino () monad which
specifies the loop body. The loopE structure provides a deep analog of the loop

structure used in the strong remote monad version.

ifThenElse :: Expr Bool -> Arduino () -> Arduino () -> Arduino ()

while :: RemoteRef a -> (Expr a -> Expr Bool) ->

(Expr a -> Expr a) -> Arduino () -> Arduino ()

loopE :: Arduino () -> Arudino ()

Changes to the Haskino protocol and firmware were also required to imple-
ment expressions, conditionals and remote references. Expressions are transmit-
ted over the wire using a bytecode representation. Each operation is encoded as
a byte with two fields. The upper 3 bits indicate the type of expression (currently
Bool, Word8, Word16, or Word32) and the lower 5 bits indicate the operation
type (literal, remote reference, addition, etc.). Expression operations may take
one, two, or three parameters determined by the operation type, and each of
the parameters is again an expression. Evaluation of the expression occurs re-
cursively, until a terminating expression type of a literal, remote reference, or
remote bind is reached. Figure 3 shows an example of encoding the addition of
Word8 literal value of 4 the first remote reference defined on the board, as well
as a diagram of that expression being used in an analogWrite command.

Conditionals are packaged in a similar manner to the way tasks are packaged,
with the commands and procedures packaged into a code block. Two code blocks
are used for the IfThenElse conditional (one block for the then branch, and
one for the else branch), and one code block is used for the While loop. In

While
Loop

when
Command

ifThenElse
Command

0x18 Boolean
Expression Len

Cmd/
ProcLen0x17 Boolean

Expression

Then
Branch

Else
Branch

While
loop

If Then Else

Update
Expression

Cmd/
Proc

Cmd/
Proc

Cmd/
Proc

Cmd/
Proc

Cmd/
Proc Len Cmd/

Proc
Cmd/
Proc

Cmd/
Proc

Fig. 4. Protocol Packing of Conditionals

addition, a byte is used for each code block to indicate the size of the block. A
current limitation of conditionals in the protocol is that the entire conditional
and code blocks must fit within a single Haskino protocol frame. However, if the
conditional is part of a task, this limitation does not apply, as a task body may
span multiple Haskino protocol frames. Figure 4 shows the encoding of both
conditional types.

Now that we have described the components of the deeply embedded version
of Haskino, we can return to a deep version of the simple example we used earlier.

exampleE :: IO ()

exampleE = withArduino True "/dev/cu.usbmodem1421" $ do

let button = 2

let led1 = 6

let led2 = 7

x <- newRemoteRef false

setPinModeE button INPUT

setPinModeE led1 OUTPUT

setPinModeE led2 OUTPUT

loopE $ do

writeRemoteRef x =<< digitalReadE button

ex <- readRemoteRef x

digitalWriteE led1 ex

digitalWriteE led2 (notB ex)

delayMillis 100

This deep example looks very similar to the strong example in structure. The
binding x, which was previously stored on the host, is now kept on the Arduino,
and created by the newRemoteRef function. The writeRemoteRef function up-
dates the remote reference and is passed an expression, which in this case is
the result of a remote computation using the =<< operator. The remote binds
represented in this writeRemoteRef example, and the bind to ex with the value
returned from readRemoteRef in the following line require implicit allocation
on the Arduino. The Haskino firmware currently implements this allocation by

storing the result of a procedure computation that would normally be sent across
the serial interface to a local buffer associated with that bind instance instead.
The expression bytecode language includes an EXPR_BIND operator, which takes
it’s input from this local buffer. Determining the best method of dealing with
these allocations is still an open issue in our research.

In this example, since the computation results that are stored in the remote
reference are used only within one iteration of the loop, the RemoteRef is not
strictly required, but is used to demonstrate the RemoteRef API. The loop body
could have been written using only binds as shown below.

loopE $ do

ex <- digitalReadE button

digitalWriteE led1 ex

digitalWriteE led2 (notB ex)

delayMillis 100

The tasks discussed in Section 4 become much more useful with the deeply
embedded implementation. In the strong implementation, they were limited to
sequences of commands and delays, as the remote language had no method of
either binding computations together, or storing the result of a computation for
future use. However, with the deep implementation, tasks may use the procedure
primitives as well, and with the addition of conditionals, full programs may be
stored for execution at a later time.

7 Comparing Runtime-Tethered Strong to Deeply
Embedded Strong Remote Monad

Table 1 summarizes the major differences we found between the strong and
deep implementations. In the strong version, all values are stored on the host,
and passing values between computations requires communication with the host.
With the deep version, values may be stored on the Arduino and passed between
computations on the Arduino, eliminating the need for intermediate host com-
munications. The basic task scheduling mechanism is able to use the full power
of the language in the deep version, where it is limited to only commands with
the strong version. One limiting factor of the deep version, is that the size of the
program that may be written is limited by the available Arduino memory, while
the strong version, due to the host interaction, is only limited by the larger host
memory.

8 Cutting the Cord

One final addition to the firmware and Haskino language has allowed us to
reach our goal of executing a stored Haskino program on the Arduino without
requiring a connection to the host. The addition of the bootTaskE primitive
allows the programer to write one previously defined task to EEPROM storage

Table 1. Comparison of Strong and Deep Embedding

Runtime-tethered Deeply-embedded

Values Stored On Host Arduino

Binds Occur On Host Arduino

Conditionals on Target No Yes

Tasks Can Use Procedures No Yes

Maximum Program Size
Limited by

Host Memory
Limited by

Arduino Memory

Communication Overhead Higher Lower

on the Haskino. The Haskino firmware checks for the presence of a boot task
during the boot process, and if it is present, copies the task from EEPROM to
RAM, and starts it’s execution.

The following example illustrates how a programmer would create a boot
task on the Arduino. The functionality of the program is the same as our other
button and 2 LED examples. In this case, the createTaskE primitive is used
to create the task in RAM on the Arduino, using the program stored in the
example monad. The bootTaskE function is then called to write the task from
RAM to EEPROM. On the next power on, the interpreter will start execution
of the task. The scheduleReset primitive may be used to clear a previously
written program from EEPROM.

example :: Arduino ()

example = do let button = 2

let led1 = 6

let led2 = 7

x <- newRemoteRef (lit False)

setPinModeE button INPUT

setPinModeE led1 OUTPUT

setPinModeE led2 OUTPUT

loopE $ do

writeRemoteRef x =<< digitalReadE button

ex <- readRemoteRef x

digitalWriteE led1 ex

digitalWriteE led2 (notB ex)

delayMillis 100

exampleProg :: IO ()

exampleProg = withArduino False "/dev/cu.usbmodem1421" $ do

let tid = 1

createTaskE tid example

bootTaskE tid

We have achieved our original goal of programming a stand alone Arduino,
using Haskell. The remote monad design pattern served us well by providing

a path to this stand alone solution. There is however, much more that can be
done. Having the ability to generate code from a DSL opens many possibilities.
For example, recompiling to bake in timing, security contraints, or robustness
concerns are possible paths forward.

9 Related Work

There is other ongoing work on using functional languages to program embedded
systems in general, and the Arduino in specific. An early use of deep embeddings
for remote execution was in the domain of graphics [5, 6]. A recent example is the
Ivory language [7] provides a deeply embedded DSL for use in programming high
assurance systems, but does not make use of the strong remote monad design
pattern, and generates C rather than use a remote interpreter.

The Feldspar project [8–10] is Haskell embedding of a monadic interface that
targets C, and focuses on high-performance. Interestingly, this work also attempt
to make use of both deep and shallow embeddings inside a single implementation.
Both Feldspar and Haskino use some form of monadic reification technology [11–
13].

There is ongoing, and as yet unpublished, work by Pieter Koopman and
Rinus Plasmeijer at Radboud University Institute for Computing and Informa-
tion Sciences to develop a deep embedding around a Clean-based deep DSL.
Their work also does not use the remote monad, and generates C rather that
use a remote interpreter. Also, Kiwamu Okabe of Metasepi Design and Hongwei
Xi of Boston University, in an as yet unpublished work, use a direct language
implementation of ATS, as opposed to a DSL, to program the Arduino.

10 Conclusion and Future Work

Our two ways of structuring remote computations, provide complimentary but
effective ways of using Haskell as a development environment for Arduino soft-
ware. The strong Haskino provides a method for quick prototyping of software
in a tethered environment. The deep version of Haskino allows the programmer
to bring the full power of Haskell to developing standalone software for the Ar-
duino. The connected version need not be limited to serial connections, as the
Arduino Stream class would allow Arduino Ethernet connections to be used in
a similar manner.

In the future, we plan to add a third way to our methodology, and directly
generate C programs from our Arduino Monad. This will allow us to bootstrap
the system. We also want to extend the scheduling mechanisms in Haskino, using
the task structure for interrupt processing, and adding mechanism for commu-
nications between tasks in the system. Finally, we also plan on investigating
using HERMIT [14] to semi-automatically translate from programs written in
the tethered strong remote monad into programs written using the deep embed-
ding. This will improve the applicability of the library.

This material is based upon work supported by the National Science Foun-
dation under Grant No. 1350901.

References

1. Erkok, L.: Hackage package hArduino-0.9 (2014)
2. Gill, A., Sculthorpe, N., Dawson, J., Eskilson, A., Farmer, A., Grebe, M., Rosen-

bluth, J., Scott, R., Stanton, J.: The remote monad design pattern. In: Proceedings
of the 8th ACM SIGPLAN Symposium on Haskell, ACM (2015) 59–70

3. Steiner, H.C.: Firmata: Towards making microcontrollers act like extensions of the
computer. In: New Interfaces for Musical Expression. (2009) 125–130

4. Elliott, C.: Hackage package boolean-0.2.3 (2013)
5. Elliott, C., Hudak, P.: Functional reactive animation. In: International Conference

on Functional Programming. (1997)
6. Elliott, C., Finne, S., de Moor, O.: Compiling embedded languages. Journal of

Functional Programming 13(2) (2003)
7. Elliott, T., Pike, L., Winwood, S., Hickey, P., Bielman, J., Sharp, J., Seidel, E.,

Launchbury, J.: Guilt free ivory. In: Proceedings of the 8th ACM SIGPLAN
Symposium on Haskell, ACM (2015) 189–200

8. Axelsson, E., Claessen, K., Dévai, G., Horváth, Z., Keijzer, K., Lyckeg̊ard, B.,
Persson, A., Sheeran, M., Svenningsson, J., Vajdax, A.: Feldspar: A domain specific
language for digital signal processing algorithms. In: MEMOCODE’10. (2010) 169–
178

9. Axelsson, E., Claessen, K., Sheeran, M., Svenningsson, J., Engdal, D., Persson, A.:
The design and implementation of feldspar. In: Implementation and Application
of Functional Languages. Springer (2011) 121–136

10. Svenningsson, J., Axelsson, E.: Combining deep and shallow embedding for EDSL.
In: Trends in Functional Programming. Springer (2013) 21–36

11. Persson, A., Axelsson, E., Svenningsson, J.: Generic monadic constructs for em-
bedded languages. In Gill, A., Hage, J., eds.: Implementation and Application
of Functional Languages. Volume 7257 of Lecture Notes in Computer Science.
Springer Berlin Heidelberg (2012) 85–99

12. Svenningsson, J.D., Svensson, B.J.: Simple and compositional reification of
monadic embedded languages. In: Proceedings of the 18th International Con-
ference on Functional Programming, ACM (2013) 299–304

13. Sculthorpe, N., Bracker, J., Giorgidze, G., Gill, A.: The constrained-monad prob-
lem. In: Proceedings of the 18th ACM SIGPLAN International Conference on
Functional Programming, ACM (2013) 287–298

14. Farmer, A., Sculthorpe, N., Gill, A.: Reasoning with the HERMIT: tool support
for equational reasoning on GHC core programs. In: Proceedings of the 8th ACM
SIGPLAN Symposium on Haskell, ACM (2015) 23–34

