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Abstract In this article we overview the design and implementation of the second gen-
eration of Kansas Lava. Driven by the needs and experiences of implementing telemetry
decoders and other circuits, we have made a number of improvements to both the external
API and the internal representations used. We have retained our dual shallow/deep repre-
sentation of signals in general, but now have a number of externally visible abstractions for
combinatorial and sequential circuits, and enabled signals. We introduce these abstractions,
as well as our abstractions for reading and writing memory. Internally, we found the need to
represent unknown values inside our circuits, so we made aggressive use of associated type
families to lift our values to allow unknowns, in a principled and regular way. We discuss
this design decision, how it unfortunately complicates the internals of Kansas Lava, and
how we mitigate this complexity. Finally, when connecting Kansas Lava to the real world,
the standardized idiom of using named input and output ports is provided by Kansas Lava
using a new monad, called Fabric. We present the design of this Fabric monad, and
illustrate its use in a small but complete example.

Keywords Domain specific languages · Hardware · Synthesis · Types

A. Gill (B) · T. Bull · A. Farmer · G. Kimmell · E. Komp
The University of Kansas, 2001 Eaton Hall, 520 West 15th Street, Lawrence, KS 66045-7621, USA
e-mail: andygill@ittc.ku.edu

T. Bull
e-mail: tbull@ittc.ku.edu

A. Farmer
e-mail: afarmer@ittc.ku.edu

G. Kimmell
e-mail: kimmell@ittc.ku.edu

E. Komp
e-mail: komp@ittc.ku.edu

mailto:andygill@ittc.ku.edu
mailto:tbull@ittc.ku.edu
mailto:afarmer@ittc.ku.edu
mailto:kimmell@ittc.ku.edu
mailto:komp@ittc.ku.edu


Higher-Order Symb Comput

1 Introduction

Domain Specific Languages (DSLs) can be rapidly developed by hosting them in a general-
purpose language, taking advantage of that language’s features and toolchain. Haskell,
a pure language based on lambda calculus [34], is well suited to host DSLs due to its purely
functional nature and best-in-class support for abstraction. Haskell DSLs are typically com-
binator libraries supporting the fundamental operations of the chosen domain, leaving the
full power of the Haskell language at the disposal of the DSL user [11].

Kansas Lava is a modern implementation of a Haskell-hosted hardware description lan-
guage that uses Haskell functions to express hardware components, and leverages the ab-
stractions in Haskell to build complex circuits. Lava [7], the given name for a family of
Haskell-based hardware description libraries, is an idiomatic way of expressing hardware
in Haskell that allows for simulation and synthesis to hardware. In this article, we explore
the internal and external representation of a Signal in Kansas Lava, where Signal is the
type used for the connections between sub-components in a hardware circuit. We also look
at how different representations of Signal-like concepts work together in concert. We as-
sume a working knowledge of Haskell in this article, especially regarding the advanced use
of types, up to and including the associated type families extension to the Glasgow Haskell
compiler [8].

By way of introducing Kansas Lava, consider the problem of counting the number of
instances of True in each prefix of an infinite list. Here is an executable specification of
such a function in Haskell:

counter :: [Bool] -> [Int]
counter inc = [ length [ () | True <- take n inc ]

| n <- [0..]
]

Of course, this function is not a reasonable implementation as it duplicates a lot of work.
In practice, we would use a function where the value for each prefix is defined in terms of
the value for the previous prefix.

counter :: [Bool] -> [Int]
counter inc = res

where res = [ if b then v + 1 else v
| (b,v) <- zip inc old ]

old = 0 : res

Haskell programmers are accustomed to using lazy lists as one of the replacements for
traditional assignment. The counter function here can be considered a mutable cell, with
streaming input and output, even though referential transparency has not been compromised.

Functional programmers and hardware designers take similar approaches to designing
cooperating processes that communicate using lazy streams. Lava descriptions of hardware
are simply Haskell programs, similar in flavor to the second counter function, that tie
together primitive components using value recursion for back-edge creation. Our counter
example could be written as follows in Lava.

counter :: Signal Bool -> Signal Int
counter inc = res

where res = mux2 inc (old + 1,old)
old = register 0 res
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In this example, mux2 uses its first argument to make a choice between its second and
third argument, and register is a flip-flop that remembers its input by outputting values
delayed by one clock cycle. Lava programs are constructed out of functions like counter,
and blocks of functionality with stored state communicate using signals of sequential values,
just like logic gates and sequential circuits in hardware. These descriptions of connected
components get translated into hardware gates, other entities, and signals between them.

2 Kansas Lava

Starting in 2009, we developed a new version of Lava, which we call Kansas Lava [18], in
order to generate a specific set of rather complex circuits that implement high-performance
high-rate forward error correction codes [16, 20, 27]. This paper discusses our observations
regarding the shortcomings of our original Kansas Lava design, and what changes were
made to address these shortcomings.

The 2009 version of Kansas Lava had three distinguishing features:

– Dual-use Signal. That is, the same Signal could be used for interpretation and for
generation of VHDL circuits. The above circuit example could be directly executed inside
GHCi, or reified into VHDL without any changes to our circuit specification.

– Use of lightweight sized-types to represent sized vectors. Our vector type, Matrix was
parameterized by two types, representing the size of the vector and the type of the ele-
ments, respectively.

– Use of IO-based reification [14] for graph capture. The loop in the counter example
above could be observed as a graph of connected primitives, making VHDL generation
straightforward.

So what went wrong and what worked well with Kansas Lava, circ. 2009? We found the
need to make the following changes for our current (2012) version:

– Add a phantom type [25] for clock domains, which allows us to unify sequential and
combinatorial circuits in a type-safe way by using universal quantification (Sect. 3).

– Introduce the possibility of unknown values into our simulation embedding (Sect. 4).
– Introduce functions for commuting types that contain our Signal, giving a representa-

tion agility we found necessary (Sect. 5).
– With these building blocks, provide various simple protocols for hardware communica-

tion, using types to specify usage (Sect. 6).
– To connect to the real world, introduce an abstraction called Fabric, the IO monad of

Kansas Lava. Using Fabric, an untyped abstraction with named signals, we connect
directly and indirectly to real circuits using generated VHDL (Sect. 7).

Furthermore, this paper makes the following contributions:

– We document the shortcomings of our original straightforward implementation of the
Lava ideas as well as our new solutions and design decisions.

– Some Haskell language features we employ were not available to the original Lava de-
velopers. In particular, associated type families [8] were not available. This paper gives
evidence of the usefulness of type families, and documents the challenges presented by
using type families in practice.

– Representation agility, that is the ability to be flexible with the representations used for
communication channels, turned out to be more important than we anticipated. We docu-
ment why we need this flexibility and our solution, a variant of commutable functors.
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This article is an updated and expanded version of [19]. In addition to improving the
presentation and adding a front-to-back example, the splitting of signals into sequential and
combinatorial circuits has a completely new form. Previously, this was done with distinct
data types, lift functions, and a unifying type class, while in this paper we distinguish be-
tween sequential and combinatorial using phantom types. We have also completely rewritten
the discussion of protocol support, and have added the presentation of the internals and ex-
ternals of the new Fabric abstraction. The Fabric API, but not the implementation, was
previous summarized in an invited position paper [15].

3 Sequential and combinatorial circuits

Haskell is a great host for Domain Specific Languages. Flexible overloading, a powerful
type system, and lazy semantics facilitate this. An embedded DSL in Haskell is simply a
library with an API that makes it feel like a small language customized to a specific problem
domain. There are two flavors of embedded DSLs:

– DSLs that use a shallow embedding perform computation directly on values in the host
language. Most definitions of monads in Haskell are actually shallow DSLs, for example.
The result of a computation in a shallow DSL is a value.

– DSLs that use a deep embedding build an abstract syntax tree. The result of a compu-
tation inside a deep DSL is a structure, not a value. This structure can in turn be used to
compute a value, to generate object code, or for static analysis. The technique of deep
embedding a DSL is what allows the generation of VHDL from Lava descriptions.

In our first iteration of the embedded DSL Kansas Lava [18], we decided to provide a
principal type, Signal, and all Kansas Lava functions used this type to represent values
over wires that change over time. Kansas Lava was unusual in that Signal contains both
a shallow and deep embedding. This is so that the same Signal could be both executed
and reified into VHDL, as directed by the Kansas Lava user. The shallow embedding was
encoded as an infinite stream of direct values and the deep embedding was an abstract syntax
tree with a phantom typed parameter. Slightly simplified for clarity, we used:

data Signal a = Signal (Stream a) (D a) -- To be refined

data Stream a = a :~ Stream a -- No null constructor

type D a = AST -- Wrapper with phantom type

data AST = Var String -- Simplified AST
| Entity String [AST]
| Lit Integer

We can see that Signal is an abstract tuple of the shallow Stream a, and the deep
abstract syntax tree, D a. Using Signal in this form, we could write operations that sup-
port both the shallow and deep components of Signal. As an example, consider and2,
which acts over Signal Bool.

and2 :: Signal Bool -> Signal Bool -> Signal Bool
and2 (Signal a ae) (Signal b be) = Signal (zipWith (&&) a b)

(Entity "and2" [ae,be])
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Here, we can see that the definition of and2 splits both arguments into the deep and
shallow components, then recombines them. The shallow result is implemented using an
appropriately typed zipWith over the boolean stream, and the deep result a single node
with the name "and2".

The first issue we faced was one of semantic conciseness. There are actually two use-
ful versions of and2. One, as above, operates over sequential inputs, representing streams
of values over time. The second version operates on combinatorial inputs, or base values.
Combinatorial circuits have no notion of history and state, analogous to pure functions in
Haskell. As such, they are often easier to compose and reason about than their sequential
versions. (We acknowledge but do not elaborate on a third alternative, a sequential variant
of and2 that delays its output by a clock cycle, as this can be constructed from existing
primitives.)

Rather than have two versions of and2, we initially defined two signal types, with lifting
functions to turn combinatorial circuits into sequential ones.

data Comb a = Comb a (D a) -- rejected implementation
data Seq a = Seq (Stream a) (D a) -- rejected implementation

class Signal sig where
liftSeq0 :: Comb a -> sig a
liftSeq1 :: (Comb a -> Comb b) -> sig a -> sig b
liftSeq2 :: (Comb a -> Comb b -> Comb c) -> sig a -> sig b

-> sig c

Using instances of the Signal class for Comb and Seq, circuits could be combinatorial,
sequential or overloaded to be either. For instance, and2 could be defined thus.

and2 :: (Signal sig) => sig Bool -> sig Bool -> sig Bool
and2 = liftSeq2 (\(Comb a ae) (Comb b be) ->

Comb (a && b) (Entity "and2" [ae,be]))

The challenge, however, was one of complexity of design. This overloading was perva-
sive, and in practice most circuits were lifted into sequential circuits. Further, we needed
multiple lift functions, as the trick of using Applicative Functors [26] to build varargs-style
lifts did not work for technical reasons that will be elaborated in Sect. 6.

Having two different types for our two families of signals, though conceptually sound,
was cumbersome in practice, leaving us looking for a different approach. A key insight is
that combinatorial circuits have no clock. Accordingly, we have since adopted a different
approach, using a single type Signal with a phantom type [25] representing the clocking
strategy used.

data Signal clk a = Signal (Stream a) AST

By using a phantom type argument, all circuits act over the unified Signal, but the param-
eterization characterizes the permissible interpretations. We used the following schema for
the interpretation of Signals with clocks.

– Signal can be given a concrete type witness for a specific clock. By convention, the
standard board clock is taken to be an element of type CLK, but there can be many clocks.
In this way, Signal CLK a is equivalent to Seq a in the discussion above. As an
example, counter can be defined in terms of the default board clock:

counter :: Signal CLK Bool -> Signal CLK Int
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Fig. 1 Waveform of the
register primitive with initial
value of I

– Signal can be given a type argument which admits membership of the Clock class.
The circuit can then assume that there is a clock available, though which specific clock
is unspecified. As such, this circuit can make use of functions requiring a clock, such as
registers and latches. Defining counter to work with any clock:

counter :: (Clock c) => Signal c Bool -> Signal c Int

Note that we are specifying the same clock for the input and output signals, but we do
not know what it is, because the circuit is overloaded over all clocks.

– Signal can be given a type argument that is universally quantified. Universal quantifica-
tion means the circuit can assume nothing about the signal’s clocking strategy. A circuit
that takes and returns a Signal with a universally quantified parameter could equally
well be combinatorial or sequential. The fact that the circuit has this universally quanti-
fied type is a witness to the fact that the circuit used no primitive that requires clocking,
such as a register or latch. The counter example above could never have such a univer-
sally quantified type, because the counting depends on having a ticking clock. However,
as discussed above, and2 can be either combinatorial or sequential.

and2 :: forall c . Signal c Bool -> Signal c Bool
-> Signal c Bool

This schema neatly compartmentalizes the various circuit types into known clocks, any
clock, and circuits that explicitly do not use a clock. One advantage of this unified use of
Signal is that we no longer need any explicit lifting functions to use a combinatorial sub-
circuit—just using the sub-circuit specializes the universally quantified clock to a specific
clock.

To see the phantom clock type in action, consider the basic clocked primitive register,
which starts with a given initial value, and delays the output by one cycle. Figure 1 gives a
timing diagram for this primitive.

register :: (..., Clock c) => a -> Signal c a -> Signal c a
register a (Signal ss sd) = Signal (a :~ ss) (...)

This principal primitive forces all sequential circuits to have a Clock overloading.
Further, we observe that it is still possible to require combinatorial sub-circuits, by the

use of rank-2 polymorphism. An example is the Kansas Lava function iterateS:

iterateS :: (..., Clock c)
=> (forall k . Signal k a -> Signal k a)
-> a -> Signal c a

iterateS f start = out
where out = register start (f out)

The expression iterateS (+1) 0 would return a Signal of ascending numbers, start-
ing at 0. By making use of rank-2 polymorphism, the type-checker enforces that we do not
pass a sequential circuit (with an overly specified clock) to iterateS by mistake.
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Finally, we observe that in the examples above, it is common that the input and output
Signals are specialized to a common clock. We use the ~ syntax, originally intended
for helping type code with associated type synonyms, to provide a local type synonym for
Signal. For example, register can be re-written as

register :: (Clock c, sig ~ Signal c, ...) => a -> sig a
-> sig a

We use this idiom pervasively throughout Kansas Lava, and will use the idiom where possi-
ble for the remainder of the paper.

4 Venturing into the unknown

Often in hardware, the value of a wire is unknown. Not defaulting to some value like zero or
high, but genuinely unknown. The IEEE definition of a bit in VHDL [22] captures this with
the notation X. Such unknowns are introduced externally, or from reset time, and represent
a value outside the possible values of valid primitive types. For example, when modeling
hardware and transmitting a boolean, we essentially want a lifted domain.

True False

X

In this case we can use the type Maybe Bool, but the situation is more complex for
structured types. Consider a Signal that represents (Bool,Bool). Through experience,
we want the two elements of the tuple to have independently lifted status. If we give the
Signal a single unknown that represents both elements, then circuits in practice will over-
approximate to unknown, hampering our shallow embedding simulation. This makes sense
if we consider our hardware targets, in which a two-tuple of values will be represented by
two independent wires.

We solve this problem using associated type families [8]. We introduce a new type class,
Rep—Representable in hardware—which captures the possibility of unknowns and other
issues concerning the representation of the values in wires.

class Rep w where
data X w -- X are lifted values on a wire
fromX :: X w -> Maybe w -- extract value from lifted type
toX :: Maybe w -> X w -- inject value into lifted type
...

This class provides an associated data family, X, which provides a lifted version of its type
argument, and a way to extract a value from, as well as inject a value into, the lifted type.
We use a data family, instead of a synonym family, because in this case we desire injectivity
(which is provided by the data instance constructor). As we will soon see, calls to fromX
and toX are quite common, and if X is not injective, every call to fromX would need a type
ascription in order to determine w.

For example, our instance for Bool makes direct use of Maybe.

instance Rep Bool where
data X Bool = XBool (Maybe Bool)
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toX (Just b) = XBool (return b)
toX Nothing = XBool Nothing
fromX (XBool (Just v)) = return v
fromX (XBool Nothing) = Nothing

Our instance for tuples uses tuples of X.

instance (Rep a, Rep b) => Rep (a,b) where
data X (a,b) = XTuple (X a, X b)
toX (Just (a,b)) = XTuple ( toX (return a)

, toX (return b))
toX Nothing = XTuple ( toX (Nothing :: Maybe a)

, toX (Nothing :: Maybe b))
fromX (XTuple (a,b)) = do x <- fromX a

y <- fromX b
return (x,y)

Diagrammatically, we represent (Bool,Bool) that can admit failure using:

X (Bool,Bool)∼= (X Bool,X Bool)∼=
( True False

X
,
True False

X

)

So there are 9 possible values for the pairing of the two boolean signals, three for left com-
ponent multiplied by three for the right component.

We can now give our complete type for Signal:

data Signal clk a = Signal (Stream (X a)) (D a)
-- actual implementation

Shallow Signals are Streams of lifted values. Deep streams remain the same as before;
VHDL and other hardware description languages have the concept of under-defined built in.
Having undefined values in our alphabet allows us to have one new clocking combinator.

delay :: (Rep a, Clock c, sig ~ Signal c) => sig a -> sig a

delay is a variant of register that issues an unknown for its initial value, which is a
useful, realistic representation of an uninitialized flip-flop.

One complication is that all function primitives now need to be written over the X type.
We can use the built-in support for the Maybe monad where possible. In practice, some
functions are straightforward, because the X type maps to (say) the Maybe data type. Maybe
is an Monad, so liftM2 can be used. To give a concrete example, consider the definition
of (+) in Kansas Lava.

instance (Num a, Rep a) => Num (Signal clk a) where
-- actual implementation of (+)
s1 + s2 = primS2 (+) "+" s1 s2
...

We define (+) in terms of a utility, primS2.

-- A lifting function for pure, 2 argument functions.
primS2 :: (Rep a, Rep b, Rep c)

=> (a -> b -> c) -> String
-> Signal clk a -> Signal clk b -> Signal clk c
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primS2 f nm = primXS2 (\ a b -> toX $ liftM2 f (fromX a)
(fromX b)) nm

-- Create an arity-2 Signal function from an ’X’ function.
primXS2 :: (Rep a, Rep b, Rep c)

=> (X a -> X b -> X c) -> String
-> Signal clk a -> Signal clk b -> Signal clk c

primXS2 f nm (Signal a1 ae1) (Signal a2 ae2)
= Signal (S.zipWith f a1 a2)

(... construct AST for this prim ...)

On the other hand, some primitives handle unknown values directly. For example, and2 al-
ways returns False if either argument is False (even if the other argument is unknown).
Rather than lift Haskell’s && function with primS2, we provide this short-circuiting be-
havior directly with primXS2. Here is the actual implementation.

and2 :: (sig ~ Signal clk) => sig Bool -> sig Bool -> sig Bool
and2 = primXS2 (\ a b -> case (fromX a, fromX b) of

(Just True , Just True) -> toX $ Just True
(Just False, _) -> toX $ Just False
(_ , Just False) -> toX $ Just False
_ -> toX $ Nothing) "and2"

5 Signals and commutable functors

If we allow Signals of tuples and other compound types, which of these two types for
halfAdder is more natural?

halfAdder :: (sig ~ Signal c) => (sig Bool, sig Bool)
-> (sig Bool, sig Bool)

halfAdder :: (sig ~ Signal c) => sig (Bool,Bool)
-> sig (Bool,Bool)

The first allows us to more naturally construct the argument tuple and pattern match on the
resulting tuple. The second can be more naturally connected to other circuit components,
such as a register. We found ourselves going around in circles between the two ap-
proaches. We wanted to support both forms, with a means to manually coerce one form into
the other form. To enable this, we again employ type families.

The class Pack signifies that a Signal can be used inside or outside a specific struc-
ture. The type translation from the packed representation (structure inside, Signal on the
outside) to the unpacked representation (structure outside, Signal on the inside) is given
by a synonym family inside the Pack class:

class Pack clk a where
type Unpacked clk a
-- Pull the sig type *out* of the compound data type.
pack :: Unpacked clk a -> Signal clk a
-- Push the sig type *into* the compound data type.
unpack :: Signal clk a -> Unpacked clk a
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This class says we can pack an Unpacked representation, and unpack it back again.
Note that, in Haskell, type families are not injective, which is actually desirable in this case.
Two packed Signals may have the same unpacked representation. Packed Signals are
not necessarily isomorphic to their unpacked representation, as long as the unpacked type is
‘bigger’ (that is, can represent all the values in the packed Signal).

Reconsidering the halfAdder example above, which was over the structure two-tuple,
we can give the Pack instance for pairs.

instance (...) => Pack clk (a,b) where
type Unpacked clk (a,b) = (Signal clk a, Signal clk b)
-- pack :: (sig ~ Signal clk) => (sig a, sig b)

-> sig (a,b)
-- unpack :: (sig ~ Signal clk) => sig (a,b)

-> (sig a, sig b)

(The types are given rather than the tedious details of the implementation here.) As can
be seen from the types, pack packs the two-tuple structure inside a signal, and unpack
lifts this structure out again.

Consider the alternative implementations of the two halfAdder circuits.

-- unpacked version
halfAdder :: (sig ~ Signal c) => (sig Bool, sig Bool)

-> (sig Bool, sig Bool)
halfAdder (a,b) = (a ‘xor2‘ b, a ‘and2‘ b)

-- packed version
halfAdder :: (sig ~ Signal c) => sig (Bool,Bool)

-> sig (Bool,Bool)
halfAdder inp = pack (a ‘xor2‘ b, a ‘and2‘ b)

where (a,b) = unpack inp

Both styles, Signals of tuples and tuples of Signals, can be used by the user as needed
without a huge impact on clarity because of the generic nature of the pack/unpack pair.

Sometimes, the Unpack class allows access to the underlying representation. For exam-
ple, consider Signal (Maybe Word8). This is a Signal of optional Word8s. A hard-
ware representation might be 8 bits of Word8 data, and 1 bit of validity. Our Unpack
instance for Maybe reflects this representation.

instance (...) => Pack clk (Maybe a) where
type Unpacked clk (Maybe a) = (Signal clk Bool,

Signal clk a)
-- pack :: (sig ~ Signal c) => (sig Bool, sig a)

=> sig (Maybe a)
-- unpack :: (sig ~ Signal c) => sig (Maybe a)

-> (sig Bool, sig a)

In general, the unpacked structure must be able to denote the complete space of the signal
to be packed. Transposing the order of the type constructors does not give an isomorphic
value in general, as the Maybe instance demonstrates. Table 1 lists the types pack and
unpack supports. Nested packing and unpacking is also supported, by chaining pack and
unpack together.

This Pack class has turned out to be really useful in practice. This ability cuts to the heart
of what we want to do with Kansas Lava: use types in an agile way to represent the intent of
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Table 1 Packed and unpacked pairs in Kansas Lava

Packed Unpacked

sig (a,b) (sig a, sig b)

sig (a,b,c) (sig a, sig b, sig c)

sig (Maybe a) (sig Bool, sig a)

sig (Matrix sz a) Matrix sz (sig a)

sig (StdLogicVector sz) Matrix sz (sig Bool)

the computation. These transposition-like operations might look familiar to some readers.
The pack and unpack operations over pairs of functors are sometimes called dist [26].
In our case pack and unpack are tied to our Signal overloading; we are commuting (or
moving) the Signal.

6 Protocols for signals

In addition to using types to more accurately model the hardware domain, we have created
a number of type idioms that make constructing complex circuits easier. These idioms form
three primary unidirectional protocols: validity (Enabled); memory (->); and updates to
memory (Write).

6.1 The Enabled protocol

Validity of a value on a wire is a general concept. Often, this validity is communicated using
an enable boolean signal that accompanies the value signal. Figure 2 shows this protocol in
action. When the enable signal is True, the value signal is present, and should be consumed.
When the enable signal is False, the value signal is arbitrary, and should be ignored. In
Kansas Lava, we define this as a type:

type Enabled a = Maybe a

Using Enabled, we signify a value that may not always be valid. Kansas Lava provides
combinators that allow combinatorial circuits to be lifted into Enabled circuits. Note that
the concept of Enabled is distinct from that of unknowns denoted by the type function
X in Sect. 4. Enabled is a user-observable phenomenon, and decisions can be based on
the validity bit; whereas unknown values are a lower-level concept allowing the shallow-
embedding to more accurately model the semantics of hardware signals.

6.2 The Memory Read Protocol

Memory is a Signal of functions from address to data.

-- example that returns a memory signal.
example :: (..., Rep a, Rep d, sig ~ Signal clk) => ...

-> sig (a -> d)

In FPGA block RAMs and block ROMs, there are two ways of reading memory, syn-
chronously (data is returned on the cycle following the address request) or asynchronously
(data is returned on the same cycle). We support both in Kansas Lava.
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Fig. 2 Waveform showing the
Enabled Protocol
communicating A B C using 5
clock cycles

-- | Read a series of addresses. Respects the latency
-- of Xilinx BRAMs.
syncRead :: (Clock clk, sig ~ Signal clk, Rep a, Rep d)

=> sig (a -> d) -> sig a -> sig d

-- | Read a memory asynchronously. There is no clock here.
asyncRead :: (sig ~ Signal clk, Rep a, Rep d)

=> sig (a -> d) -> sig a -> sig d

We can see the clocking domains reflected here. The memory to be read, the address, and
the result must be in the same clocking domain. We can also see that the asyncRead is
universally quantified; an actual clock is not required. This may seem strange, but when
refining Kansas Lava programs, this can be useful. For instance, asyncRead could be
used to generate a circuit that is passed to iterateS. The final observation regarding
asyncRead is that the type of asyncRead is the same as the type of the <*> combinator
for Applicative Functors [26], modulo the class constraints.

6.3 The memory Write protocol

So how do we create a Signal of functions (a -> d)? For ROMs, there is a built in
combinator that creates a lookup table from a function.

rom :: (Rep a, Rep d, sig ~ Signal c) -> (a -> X d)
-> sig (a -> d)

RAMs are created by a sequence of write requests, which are optionally enabled address-
datum pairs.

type Write a d = Enabled (a,d)

The Write idiom gives an optional write command, saying write datum (d) to address (a),
if enabled.

To construct the shallow embedding of our memory Signal, a Signal of functions,
we observe that, at any point in time, the contents of the memory at address a is equal to the
most recent write request to a. Given access to the history of write requests (the prefix of the
stream contained in the shallow embedding of the Write Signal), it is straightforward
to generate the memory Signal. Specifically, in Kansas Lava, RAMs are created with
writeMemory, a function that takes a Signal of Write requests and returns a memory
Signal.

writeMemory :: (Clock clk, sig ~ Signal clk, Rep a, Rep d)
=> sig (Write a d) -> sig (a -> d)

6.4 Observations on protocol usage in practice

In Kansas Lava a Signal, like all Haskell values, can be consumed multiple times without
incident. If a memory Signal is read by two consumers, semantically the two reads hap-



Higher-Order Symb Comput

pen at the same time. On Xilinx FPGAs, however, this requires that the memory is cloned
for each reader. Sharing memory is useful when deriving circuits, but must be carefully
controlled when generating VHDL, as the hardware contains a finite number of memory
elements. In general, if Xilinx tools warn that too many BRAMs are being used, memory
sharing is a prime suspect.

From a hardware perspective, the clock for input stream of Write requests could be
completely independent of the clock of the memory consumer. There is no reason, other than
the complexity of implementation, that a memory must read and write based on the same
clock. While we have experimented with a cross clock-domain variant of writeMemory,
it remains an experimental feature and the subject of future research. For example, under
this cross clock-domain paradigm, we needed to associate a clock with a specific simulation
frequency, so a reasonable approximation of the cross domain sampling can be done.

Together these three types of signal protocols form a small and powerful algebraic frame-
work over Signal, able to express many forms of sequential communications used by
hardware designers in practice. Kansas Lava also supports bidirectional protocols, which
allow for flow control; see [17] for more details.

7 The Fabric monad

An important reason to use Kansas Lava is to generate VHDL. Kansas Lava circuits are
Haskell functions over Signals. Reifying a Haskell function constructed as part of a deep
embedding is well understood [11, 14]. Turning this reified circuit into a usable VHDL
description with a reasonable interface is more challenging. In Haskell, and therefore Kansas
Lava, arguments and return values are position dependent. VHDL (and Verilog) components
have named, position independent input and output ports. The challenge is to generate a
VHDL circuit with named ports from a Haskell function over Signals.

Originally, Kansas Lava named its ports in order, with inputs (i0, i1, . . . ), and outputs
(o0, o1, . . . ). The user was expected to add a VHDL wrapper that gave meaningful names
to the ports. However, this was brittle and did not scale to circuits with a large number of
inputs and outputs. Though the generated circuit was correctly rendered, connecting sev-
eral sub-systems involved tedious and error-prone manual counting of arguments and tuple
components.

After attempting to solve this problem with various kludges, we created a monad called
Fabric to act as the layer between our functional circuits and the real world of FPGA
boards. One can think of Fabric as the IO monad of Kansas Lava, or alternatively as a
little DSL that handles naming and component assembly.

In order to express a circuit with names ports, we want a function mapping a list of named
inputs to a list of named outputs.

type Fabric = [(String,Pad)] -> [(String,Pad)] -- 1st attempt

Here, Pad is a universal Signal type, Kansas Lava’s analogue of Haskell’s Dynamic
type for type-safe casts. We use this to allow Signals of varying types to be stored in a list
of homogeneous-typed elements.

Promoting this function into a monad via newtype allows us to take advantage of
monadic combinators and idioms, such as do notation.

newtype Fabric a
= Fabric ([(String,Pad)] -> (a,[(String,Pad)]))
-- 2nd attempt
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This structure has one remaining issue: Pad names (and, internally, the widths) of both
inputs and outputs must be known before the internal Fabric function is called. We can
“tie the knot”, allowing creation of pads as needed, by maintaining the list of input pads as
state and accumulating a list of output pads with a writer. From this structure, we can reify
circuits with names, as well as discover both the input and output names.

Taken together, our Fabric monad has the following structure:

newtype Fabric a
-- named inputs named inputs

= Fabric ([(String,Pad)] -> (a,[(String,Pad)],
[(String,Pad)]))

-- named outputs

instance Monad Fabric where ...

The interface for specifying inputs and outputs in VHDL is concise and monadic.

inStdLogic :: (...,Rep a, W a ~ X1)
=> String -> Fabric (Signal CLK a)

inStdLogicVector :: (..., Rep a)
=> String -> Fabric (Signal CLK a)

outStdLogic :: (..., Rep a, W a ~ X1)
=> String -> Signal CLK a -> Fabric ()

outStdLogicVector :: (..., Rep a)
=> String -> Signal CLK a -> Fabric ()

The W a ~ X1 constraint uses a type function W to ensure that values of the type a can be
represented as a single wire.

Like IO functions in Haskell, Fabric functions in Kansas Lava are used to read from
external stimuli and write to the outside world. Being able to name ports also permits us
to generate complete VHDL for a specific FPGA board by allowing us to generate a UCF
description, which connects named ports in VHDL to actual hardware pins.

To turn a Fabric into a circuit, we reify the Fabric into a Kansas Lava Entity Graph
(KLEG), which is then transliterated into VHDL. As an example, consider a program that
reads the state of two switches on the board, and lights up three LEDs based on their position
and the output of a nand gate. Figure 3 gives the complete Kansas Lava program.

We can test our example using the command line:

ghci> example low high
high
ghci> example high high
low

We use test_leds to connect example to the switches and lights, via the Fabric
monad. The two Fabric functions switches and leds, imported from a board-specific
Haskell module, allow us to read inputs from the board (for example, switch positions), and
write outputs (for example, LEDs). These functions have the following types:

switches :: Fabric (Matrix X4 (Signal CLK Bool))
leds :: Matrix X8 (Signal CLK Bool) -> Fabric ()

Finally, we generate VHDL by capturing and reifying this Fabric into a KLEG graph,
and then rendering the KLEG graph as a VHDL file. Appendix A lists the output of invoking
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1 {-# LANGUAGE TypeFamilies #-}
2 import Language.KansasLava
3 import Hardware.KansasLava.Boards.Spartan3e
4 import Data.Sized.Matrix
5

6 -- The Kansas Lava example: a nand gate
7 example :: (sig ~ Signal c) => sig Bool -> sig Bool
8 -> sig Bool
9 example in1 in2 = in1 ‘nand2‘ in2

10

11 -- The Kansas Lava Fabric: switches and leds around
12 -- the nand gate
13 test_leds :: Fabric ()
14 test_leds = do sw <- switches
15 let in1 = sw ! 0
16 in2 = sw ! 1
17 out1 = example in1 in2
18 leds (matrix $ [ in1, in2, out1 ]
19 ++ replicate 5 low)
20

21 -- Reify the Fabric, and generate VHDL for our example
22 main = do kleg <- reifyFabric test_leds
23 writeVhdlCircuit "main" "main.vhd" kleg
24 writeUCF "main.ucf" kleg

Fig. 3 A complete example of using Kansas Lava to generate a circuit for an FPGA

this example, with the invocation of nand on Line 33. The VHDL is verbose; most of the
coercions here are introduced by the generic nature of the Fabric. (We have put no effort
into solving this verbosity because almost any synthesis technology used today will auto-
matically remove the needless coercions, leaving the core circuit.) We also automatically
generate the UCF file, based on what ports are utilized inside the Fabric.

Without access to a hardware board, it is still possible to test specific circuits, but how
do we test the connections to board components such as LEDs or toggle switches? Towards
this, we have developed a framework for proving board simulators. These simulators take
a compliant Fabric, as generated above, and execute it using the shallow embedding.
Appendix B shows the simulator in action. The simulator can be interacted with (switches
toggled; buttons pressed; LEDs lit; LCD utilized), and inside the simulator the external
ports (RS232, VGA, RJ-45) are reflected as named UNIX pipes. With careful handling, it is
actually possible to telnet into the virtual board, and interactively test how specific circuits
might respond.

8 Related work

The ideas behind Lava and embedded hardware description languages are well explored, and
there have been many implementations of embedded hardware description languages. There
have been three families of such languages that use Haskell: Lava, Hydra and ForSyDe. We
now summarize the history of these three family trees.
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Lava is the given name to a class of Haskell programs that implement a function-based
version of the hardware description language Ruby [21, 24]. Ruby, not to be confused with
the modern programming language with the same name, was based on relations, not func-
tions, and was inspired by the seminal work in μFP [36]. The key conundrum in Lava was
how to represent loops in circuits. Chalmers Lava [7] chose to use observable sharing [9, 10],
while Xilinx Lava [37] choose to use a monad to represent sharing [12, 13]. The Chalmers
line of investigation lives on, in the form of Wired [1], and more recently Feldspar [2] which
though not a hardware description language uses many of the same concepts and know-
how as developed with Lava. Finally, York Lava is a independent effort to use the same
ideas to generate VHDL for testing circuit designs and micro-architecture implementation
ideas [28].

Hydra is a parallel line of investigation lead by O’Donnell at the University of Glas-
gow. Hydra pre-dates Haskell itself, with circuits originally being described in Daisy [31],
an early lazy functional language. O’Donnell re-implemented Hydra into Haskell [29], and
successfully used the developed system as a teaching tool [30]. O’Donnell continued active
development on Hydra [33], including the use of Template Haskell for generating unique
labels that facilitate reification [32]. Kansas Lava shares many of the concepts and solutions
using in Hydra, including the specific ability to distinguish between combinatorial and se-
quential circuits using types, and using lifted signal values. Kansas Lava implements these
concepts using modern Haskell extensions, like type functions and user-level rank-2 poly-
morphism. Also, while Kansas Lava uses a single Signal type inhabited by a phantom type
argument that stores both the deep and shallow interpretation simultaneously, Hydra uses the
Haskell class system to allow explicit overloading of either interpretation automatically.

ForSyDe [35], is a third system which addresses many of the same concerns as Kansas
Lava. Like Kansas Lava, ForSyDe provides both shallow and deep embeddings, though in
ForSyDe this is done via two distinct types using the Haskell import mechanism. Addi-
tionally, ForSyDe provides a rich design methodology on top of the basic language, and
supports many “models of computation” [23]. The principal differentiator of Kansas Lava
is its use of type families, which allow a single executable model to be utilized effectively.
Kansas Lava has also pushed further with the family of connected signal types, and has
taken a type-based approach to supporting multiple clock domains. A more complete for-
mal comparison of the two systems remains to be done. Like Hydra, ForSyDe’s makes use
of Template Haskell, but to help with the generation of usable sized types. For example,
vectors are statically checked for size using Template Haskell.

Outside of Haskell, there are many other generators for hardware. For example, JHDL [3]
is a hardware description language, embedded in Java, which shares many of the same ideas
found in Lava. It may be possible to use Java generics to apply the ideas from Kansas Lava
to a recent version of Java.

Kansas Lava is a modeling language. It models communicating processes, currently via
synchronous signals. There are several other modeling languages that share this compu-
tational basis, for example Esterel [4]. There are many other models for communicating
processes, and each one has many language-based implementations. The overview paper by
Jantsch and Sander [23] gives a good summary of this vast area of research.

Kansas Lava is designed to encourage refinement into efficient circuits, inspired by the
outstanding research undertaken by the Computing Laboratory at the University of Oxford.
Specifically, the methodologies promoted by [6] and [5], point towards a brighter future for
robust software development, and with systems like Kansas Lava, these benefits can include
hardware development as well.
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9 Conclusions

In this paper we have seen a number of improvements to Kansas Lava guided by the principle
of using types to express the nature and limitation of the computation being generated.
Kansas Lava required many more changes than anticipated in order to turn it into a useful
VHDL generation tool. For now, however, Kansas Lava as a language is somewhat stable.

Each change was initiated because of a specific shortcoming. We used a phantom type to
represent clock domains, allowing us to unify our separate signal types and eliminate our ex-
plicit lifting combinators. This change also promises a way forward in dealing with circuits
with multiple clock domains. We provided generic mechanisms for commuting signals with
other compound types, allowing us to write functions that take advantage of Haskell idioms,
such as pattern matching, but can still be usefully connected to other circuit components.
We explicitly model the semantics of the unknown values in hardware, despite the pervasive
consequence of this choice, because our simulations were not matching our experience with
generated VHDL. We enumerate a number of basic protocols for intra-circuit communica-
tion. These protocols are elegantly expressed by their types. Finally, we have monad that
provides an interface for connecting the untyped external inputs and outputs of the FPGA to
the typed internal function representing the Kansas Lava circuit.

We hope to build up a stronger transformational design methodology around Kansas
Lava. Currently we have a number of large circuits that have been translated from high-
level models systematically into Lava circuits, where large is defined as generating millions
of non-regular discrete logic units. Our largest circuit to date is about 800 lines of Kansas
Lava. The commuting of signals has turned out to be extremely useful when deriving our
circuits from higher-level specifications, as we discussed in [16]. Writing correct, efficient
circuits is hard, and we hope to use some of these circuits as candidates for a more formal
use of transformation methodologies in the future.

Acknowledgements We would like to thank the TFP 2010 referees for their useful feedback, both on this
article, and on the earlier TFP version of this article. We would also like to thank Neil Sculthorpe for his
detailed comments.

Appendix A: VHDL generated for interactive nand gate circuit

1 library IEEE;
2 use IEEE.STD_LOGIC_1164.ALL;
3 use IEEE.NUMERIC_STD.ALL;
4 use work.lava.all;
5 use work.all;
6 entity FirstExample is
7 port(clk : in std_logic;
8 SW : in std_logic_vector(3 downto 0);
9 LED : out std_logic_vector(7 downto 0));

10 end entity FirstExample;
11 architecture str of FirstExample is
12 signal sig_2_o0 : std_logic_vector(7 downto 0);
13 type sig_3_o0_type is array (7 downto 0) of std_logic_vector(0 downto 0);
14 signal sig_3_o0 : sig_3_o0_type;
15 signal sig_7_o0 : std_logic;
16 signal sig_6_o0 : std_logic;
17 signal sig_4_o0 : std_logic;
18 type sig_5_o0_type is array (3 downto 0) of std_logic_vector(0 downto 0);
19 signal sig_5_o0 : sig_5_o0_type;
20 begin
21 sig_2_o0 <= lava_to_std_logic(sig_3_o0(7)) & lava_to_std_logic(sig_3_o0(6))
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22 & lava_to_std_logic(sig_3_o0(5)) & lava_to_std_logic(sig_3_o0(4))
23 & lava_to_std_logic(sig_3_o0(3)) & lava_to_std_logic(sig_3_o0(2))
24 & lava_to_std_logic(sig_3_o0(1)) & lava_to_std_logic(sig_3_o0(0));
25 sig_3_o0(0) <= "" & sig_4_o0;
26 sig_3_o0(1) <= "" & sig_6_o0;
27 sig_3_o0(2) <= "" & sig_7_o0;
28 sig_3_o0(3) <= "" & ’0’;
29 sig_3_o0(4) <= "" & ’0’;
30 sig_3_o0(5) <= "" & ’0’;
31 sig_3_o0(6) <= "" & ’0’;
32 sig_3_o0(7) <= "" & ’0’;
33 sig_7_o0 <= (sig_4_o0 nand sig_6_o0);
34 sig_6_o0 <= lava_to_std_logic(sig_5_o0(1));
35 sig_4_o0 <= lava_to_std_logic(sig_5_o0(0));
36 sig_5_o0(0) <= SW(0 downto 0);
37 sig_5_o0(1) <= SW(1 downto 1);
38 sig_5_o0(2) <= SW(2 downto 2);
39 sig_5_o0(3) <= SW(3 downto 3);
40 LED <= sig_2_o0;
41 end architecture str;

Appendix B: Spartan3E starter board simulator running nand gate circuit

_||_____|VGA|_____|X|__|232 DCE|__|232 DTE|__
|o|| |_
| | |
| +----+ | |

----+ DIGILENT |FPGA| clk: 460 | |
RJ45| ## | | SPARTAN-3E | |
----+ ## +----+ \ / | |
_|_ \ / () | |
USB| +--+ \ / |_|
---’ |##| +----+ FPGA |_
|+--+ +--+ |####| .....@@. | |
||##| +----------------+ 76543210 |_|
|+--+ (e) | | |_
| (a) (|) (g) | | : : k : | |
| (x) +----------------+ h j : l |_|
+---------------------------------------------+
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