EECS 776

Functional Programming and Domain Specific
Languages

Professor Gill

The University of Kansas

Feb 14t 2020

0 Int [A] (AB) | A-B
[...] [0] [Int] [[A]] [(A,B)] [A—B]
(--»C) (0,C) (Int,C) | ([ALC) | ((AB)C) | (A—B,C)
c- C—-() | C—oInt | C—[A] |IC>(AB)| C=—
(A—B)
€ |)—»C | Int=C | [A]—»C |(AB)—=C|(A—B)—

take, with Curr

We can create a custom version of take

GHC1> :t take
Int -> [a] -> [a]
GHCi> let f = take 5
GHCi> :t £

f :: [a] =-> [a&a]
GHCi> f [10..20°
[10,11,12,13,14°

This works, because of Currying.

©2020 Andrew Gill, 3/17,1200x704

Curr

The principle of currying is simple:
* All you can do is apply a function to an argument;
* and every function accepted just one argument.
So:
* Pass the first argument;
* get back a new and customized function that accepted the
second argument.
So:
* we pass 5 to take;
* and get back a new and customized function that take's 5

elements.

©2020 Andrew Gill, 4/17,1200x704

Consider

GHCi> filter odd [1..10]
[1,3,5,7,9]

How might we construct a function that filters out even numbers!?

GHCi> let f =

* What is the type of this function!?

KU

©2020 Andrew Gill, 5/17,1200x704

The truth about filterin

* filter takes two arguments, a function anda list.
* |t returns the elements, in order, that match the predicate.

VT S T o (o, S = (oo) M, SO M I, S o=t

OR

filter :: (a => Bool) => ([a] =-> [a])

* This use of functions-as-arguments is called higher-order
functions.
* This pervasive use of functions is why this class is called functional

programming.

map is one of the most important functions in functional
programming.

map :: (a => b) =-> [a] =-> [b]

* What can we tell from the type!
* What can we use map for?
 Can we nest map!

 Can we write map!

©2020 Andrew Gill, 7/17,1200x704

Other Higher Order functions

flip :: (a -=> b -=> ¢c) -=> b -> a -> c
@R T AT (N O TN o 0 NP S B T, S DT, SN o TR, YO o
uncurry :: (a -=> b -> c¢c) -> (a, b) -> c

* £1ip turn around the arguments
* curry takes a function that takes a 2-tuple and Currys it.
* uncurry takes a function that uses currying, and provides a 2-tuples API.

KU

©2020 Andrew Gill, 8/17,1200x704

Sections are a way of building a specialized function from an infix function.

GHCi> :t (+)

(+) :: Num a => a -> a -> a
GHCi> :t (+ 1)

(+ 1) :: Num a => a -> a
GHCi> :t (1 +)

(L +) :: Num a => a -> a

 Parenthesis around an infix operator, (+), gives a nonfix function
* Parenthesis around an infix operator and an argument gives a partially applied function.

HI2=1+2 (I+)2=1+2 (+1)2=2+1

Caveat: (- 2) is negative two, not subtract two. It is the one exception here. Use negate
2 instead.

©2020 Andrew Gill, 2/17,1200x704

Dot and Dollar

(.) :: (b ->c¢c) -> (a -> b) -> a -> c
($) :: (a -=> b) -> a -> b

* . composes two functions. The data flows from right to left.
* $ is an infix version of function application.
Both these higher-order functions allow chaining of function.

GHCi> map (*2) $ map (+1) $ [1..10]
Fararar

GHCi> let f = map (*2) . map (+1)
GHCi> £ [1..10]

20707

* use $ when you are providing the final argument
* use . when composing functions

©2020 Andrew Gill, 10/17, 1200704

