EECS 776

Functional Programming and Domain Specific
Languages

Professor Gill

The University of Kansas

Feb 10t 2020

Basic list functions

Remember lists, and list operations? First, look at the types

length :: [a] -> Int -— length of a list

(++) =:: [a] =-> [a] =-> [a] -- append two lists

1] e L O T e R = Tao e - L B L N g g

head :: [a] =-> a —-— take the first element of a
list

tail :: [a] =-> [a] -— take the rest of a list

i AR % 8 [Yo OS> HAAEN = b AP | [(e EORR Y- e 1 —Hh A, 0 PR 1 1 RO s a1,

We are going to write all of these today.

©2020 Andrew Gill, 2/14,1200x704

s to bits

Consider these examples:

GHCi> let swap (a,b) = (b,a)
GHCi> swap (1,2)
(2,1)

What is happening?
* The tuple is being deconstructed, into the variables a and b.
* A new tuple is being constructed, using a and b, swapped.

GHCi> let reverse [a,b,c] = [c,b,al
GHCi> reverse [1,2,3]
[3,2,1]

GHCi> reverse [1,2]
**% Exception: <interactive>:2:5-29: Non-exhaustive
patterns in function reverse

How do we generalize this to work over any length of list?

©2020 Andrew Gill, 3/14,1200x704

The truth about lists

[..,..,..] isjustsyntactical sugar for building finite, fixed sized lists.
Instead, we can build list inductively.
* An empty list is constructed by using [].
* An non-empty list is constructed by using a value and another list. This operation is
called “cons”, and written as infix : in Haskell.
The : operator associates to the right. This means we can write:

l:2:3:1([]

This list is identical to the list generated by [1,2, 3].

add0 ::
sho ol 4
notation

[Int]

0

XS

-> [Int]

et 01 0 15 1 W M0 0¥ o w0 on 1 0~ YOG 1 1) 1 o (O REIRRE

'r -

.]

©2020 Andrew Gill, 4/14,1200x704

KU

Table of value identifiers and

symbols

What Syntax-rule | Description Example

name start with Upper Constructor | TrueorFalse

name start with lower variable x or abc

symbol start with ;' infix Constructor

symbol not starting with ':'| infix variable +or”

specials tuples, lists (- .) or
[1 2 3]

infixtononfix: 1+2 = (+) 12
nonfixto infix: modxy=x mod y

©2020 Andrew Gill, 5/14,1200x608

KU

Table of type identifiers and

symbols

What Syntax-rule Description Example
name start with Upper Fixed Type Int or Bool
name start with lower type variable a is universally

quantified
specials tuple type, list type (eeeypeas)or
[Int]

©2020 Andrew Gill, 6/14,1200x608

Pattern matching in Haskell

Both fixed-sized list notation and cons-list notation can be used for pattern matching.

head :: [a] =-> a —-— take the first element of a
list

head (x : Xs) = X

tail :: [a] =-> [a] -— take the rest of a list

| - e) R 5, . "4 .,

Both notations can be intermixed.

D EAE T T T e T BT T -— 1s a list empty
1 g s M 0 OO B True
null (x:xs) False

* Here, the first equation is attempted, then if it fails, the second.
* This “pattern matching”is a form of control flow

22020 Andrew Gill, 7/ 14, 1 200704

Haskell functions and recursion

Many Haskell functions are recursive.
Canonical example: factorial function.

it (e e TI]Y) st e el aTeN
Eac) =],
fac n = n * fac (n-1)

Another way of writing, using 1f then else.

Tl il

fac :: Int

2 0 2]

-> Int

0 then 1 else

QT S

(n—-1)

©2020 Andrew Gill, 8/14,1200x704

KU

Common way of acting over a list

Write a function that adds 1 to every element of a list.

adder :: [Int] => [Int]
adder [] []
adder (xX:xs) x + 1 : adder xs

©2020 Andrew Gill, 2/14,1200x704

h function

| ets write the len

We count the cons cells, recursively.

length :: [a&]
length []
length (x:xs)

-> Int

0
1 + length xs

If a value is ighored, you can say so.

length :: [a&]
Lencth]
length (:xs)

-> Int

0
1 + length xs

©2020 Andrew Gill, 10/ 14, 1200704

fromto function

Here is what we want to function to do

GHCi> fromto (1,10)
(1,2,3,4,5,0,7,8,9,10]

First attempt, using tuples

fromto :: (Int,Int) -> [Int]
fromto (n,m) = 1f n > m then [] else n : fromto
(n+1,m)

KU

©2020 Andrew Gill, 1 1/14, 1200704

fromto function Curryed (a.k.a.

Can we make this neater?

GHCi> fromto 1 10
(1,2,3,4,5,6,7,8,9,10]

Second attempt, using currying

fromto :: Int => Int => [Int]
fromto n m = 1f n > m then [] else n : fromto

(n+1l) m

©2020 Andrew Gill, 12/ 14, 1200x608

The principle of currying is simple:
* All you can do is apply a function to an argument;
* and every function takes just one argument.

But what about zip!?

zip :: [a] -> [b] -> [(a,b)]

zip really has type
zip :: [a] => ([b] =-> [(a,b)])

* Key idea: => groups to the right
* All functions always have one argument

KU

Let's write the append function

Remember lists, and list operations? First, look at the types

length a] =-> Int

(++) [T] e S
null ‘a] => Bool

head al] =-> a

= NebAR Bt ey

tail :: [a] =-> [a]

(:) ta => [a] =-> [a]

1 Eni= b

-—- length of a list

= 0] © Y=Y 9 o 1 o N B B -
- 1s a list empty

— take the first element of

— take the rest of a list
- add a value to front of

What might a function of this typedo? ? :: [[a]] -> [a]

Eemic =l oSl s e]

—-— flatten a list

What might this function of thistypedo? ? : : [(a,b)] -> ([a], [b])

unzip :: [(a,b)] => ([al, [b])
into a pair of lists

-—- split a list of pairs

©2020 Andrew Gill, 15/29, 1200704

y . \V

