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Basic list functions

Remember lists, and list operations? First, look at the types

length :: [a] -> Int -— length of a list

(++) =:: [a] =-> [a] =-> [a] -- append two lists
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head :: [a] =-> a —-— take the first element of a
list

tail :: [a] =-> [a] -— take the rest of a list
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We are going to write all of these today.
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s to bits

Consider these examples:

GHCi> let swap (a,b) = (b,a)
GHCi> swap (1,2)
(2,1)

What is happening?
* The tuple is being deconstructed, into the variables a and b.
* A new tuple is being constructed, using a and b, swapped.

GHCi> let reverse [a,b,c] = [c,b,al
GHCi> reverse [1,2,3]
[3,2,1]

GHCi> reverse [1,2]
**% Exception: <interactive>:2:5-29: Non-exhaustive
patterns in function reverse

How do we generalize this to work over any length of list?
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The truth about lists

[..,..,..] isjustsyntactical sugar for building finite, fixed sized lists.
Instead, we can build list inductively.
* An empty list is constructed by using [ ].
* An non-empty list is constructed by using a value and another list. This operation is
called “cons”, and written as infix : in Haskell.
The : operator associates to the right. This means we can write:

l:2:3:1([]

This list is identical to the list generated by [1,2, 3].
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Table of value identifiers and

symbols

What Syntax-rule | Description Example

name start with Upper Constructor | TrueorFalse

name start with lower variable x or abc

symbol start with ;' infix Constructor

symbol not starting with ':'| infix variable +or”

specials tuples, lists (- .) or
[ 1 2 3 ]

infixtononfix: 1+2 = (+) 12
nonfixto infix: modxy=x mod y
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Table of type identifiers and

symbols

What Syntax-rule Description Example
name start with Upper Fixed Type Int or Bool
name start with lower type variable a is universally

quantified
specials tuple type, list type (eeeypeas)or
[Int]
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Pattern matching in Haskell

Both fixed-sized list notation and cons-list notation can be used for pattern matching.

head :: [a] =-> a —-— take the first element of a
list

head (x : Xs) = X

tail :: [a] =-> [a] -— take the rest of a list
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Both notations can be intermixed.

D EAE T T T e T BT T -— 1s a list empty
1 g s M 0 OO B True
null (x:xs) False

* Here, the first equation is attempted, then if it fails, the second.
* This “pattern matching”is a form of control flow
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Haskell functions and recursion

Many Haskell functions are recursive.
Canonical example: factorial function.

it (e e TI]Y) st e el aTeN
Eac ) =],
fac n = n * fac (n-1)

Another way of writing, using 1f then else.

Tl il

fac :: Int

2 0 2]

-> Int

0 then 1 else

QT S

(n—-1)
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Common way of acting over a list

Write a function that adds 1 to every element of a list.

adder :: [Int] => [Int]
adder [] [ ]
adder (xX:xs) x + 1 : adder xs
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h function

| ets write the len

We count the cons cells, recursively.

length :: [a&]
length []
length (x:xs)

-> Int

0
1 + length xs

If a value is ighored, you can say so.

length :: [a&]
Lencth ]
length ( :xs)

-> Int

0
1 + length xs
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fromto function

Here is what we want to function to do

GHCi> fromto (1,10)
(1,2,3,4,5,0,7,8,9,10]

First attempt, using tuples

fromto :: (Int,Int) -> [Int]
fromto (n,m) = 1f n > m then [] else n : fromto
(n+1,m)
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fromto function Curryed (a.k.a.

Can we make this neater?

GHCi> fromto 1 10
(1,2,3,4,5,6,7,8,9,10]

Second attempt, using currying

fromto :: Int => Int => [Int]
fromto n m = 1f n > m then [] else n : fromto

(n+1l) m
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The principle of currying is simple:
* All you can do is apply a function to an argument;
* and every function takes just one argument.

But what about zip!?

zip :: [a] -> [b] -> [(a,b)]

zip really has type
zip :: [a] => ([b] =-> [(a,b)])

* Key idea: => groups to the right
* All functions always have one argument
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Let's write the append function




Remember lists, and list operations? First, look at the types

length a] =-> Int

(++) [T ] e S
null ‘a] => Bool

head al] =-> a

= NebAR Bt ey

tail :: [a] =-> [a]

(:) ta => [a] =-> [a]

1 Eni= b

-—- length of a list
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- 1s a list empty

— take the first element of

— take the rest of a list
- add a value to front of

What might a function of this typedo? ? :: [[a]] -> [a]

Eemic =l oSl s e ]

—-— flatten a list

What might this function of thistypedo? ? : : [ (a,b)] -> ([a], [b])

unzip :: [(a,b)] => ([al, [b])
into a pair of lists

-—- split a list of pairs
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