EECS 776

Functional Programming and Domain Specific
Languages

Professor Gill

The University of Kansas

Feb 7t2020

Types are shorthand descriptions of things

42 :: Int

* Type-checking vs. type-inference!?

* Type-checking is checking if the types are self-consistent

* Type-inference is checking without being told what the types are
* Haskell supports both. In practice:

* Most types are inferred by the compiler

 Types given by Haskell users (you!) are a mild form of documentation
* Question to ask: Does adding types add clarity?

KU

©2020 Andrew Gill, 2/29,1200x704

Primitives in Haskell

All primitive types start with an upper case letter
Int, Integer, Float, Double, Bool, Char
* Int - Signed value, the size of the machine int

* Integer - Arbitrary precision signed value
* Float - IEEE 32-bit floating point number
* Double - |[EEE 64-bit floating point number
* Bool - result of a comparison, True or False.
* Char - asingle character
There are ways of defining new types

©2020 Andrew Gill, 3/29,1200x704

Structure in Haskell

There are two built-in structures
* Lists - arbitrary length, every element has the same type

(1,2,3]:: [Int]

* Tuples - specific length, every element can have a different type
(1, '¢c',1.0):: (Int, Char,
Float)

Both are used extensively in programs
(There are also ways of defining new structures)

KU

©2020 Andrew Gill, 4/29,1200x704

Lists are conceptually linked-lists. You can build them directly, or build a list out of a smaller
list.

GHCi> let xs = [1,2,3]
GHCi> Xxs

[1,2,3]

GHCi> length xs

3

The type is written [type], and every element must be of that type.
What is the type of these bindings!?

GHCi> let xs
GHCi> let xs
GHCi> let xs
GHCi> let xs

1,2,3::Float]

1] :: [Int]
1..100 :: Float]
]

KU

©2020 Andrew Gill, 5/29,1200x704

Lists (and most structures) can be nested

GHCi> let xs = [[1,2,3::Float]l, [5,6,7]]
GHCi> :t xs

[[Float]]

GHCi> let xs = [[[['a','D','c']1]1]1]

GHCi> :t xs

[[[[Char]]]]

Lists can not mix types

GHCi> let xs = [True, 'c']
<interactive>:15:16:
Couldn't match expected type Bool' with actual type
"Char'
GHCi> let xs = [1,2,[3,4]]
<more bad things happening>

KU

©2020 Andrew Gill, 6/29,1200x704

There are many operations over

list

length a] => Int -- length of a list

(++) al => [a] =-> [a] -— append two lists

null a] => Bool --— 1s a list empty

head = T e | b oA i 1 = feit] 1, = el B a0 et~ D=8 = 1 e 9
a list

tail :: [a] =-> [a] -— take the rest of a list
fae) JNT NOIE. - OO I T (ORI) OORY TR Tl Ve Lo I .- B I b T W of o YO o oo N oA e
list

(') :: [a] => Int =-> a -— get n-th element

Remember:

* —=>is used for function types (requiring arguments)

* lower-case names are polymorphic (can be anything)
* No structure is ever damaged by any function

* Instead, new structures are created

©2020 Andrew Gill, 7/29,1200x608

Strings are Lists of Char

GHCi> let str = "Hello
GHCi> :t str

str :: [Char]

EECS 776"

This means that strings can use the list operators
There is a short-cut name for strings, because they are so common

type String = [Char]

Stringand [Char] areinterchangeable.

GHCi> let str = "Hello
GHCi> :t str

str :: String

GHCi> :t str ++ []

str :: [Char]

EECS 776"

String

©2020 Andrew Gill, 8/29,1200x704

Tu Ies

Tuples are a specific length, and every element can have a different type
* There are 2-tuples to (at least) |5-tuples
* GHC supports up to 62
* [f you are using more than (say) a 5-tuple, then you are using Haskell wrong
* They are intended, like in math, for small local groupings

GHCi> let xs = (1,"Hello",'c')
GHCi> :t xs

(Integer, [Char],Char)

GHCi> let xs = (1,"Hello")
GHCi> :t xs

(Integer, [Char])

GHCi>

* Thereis a zero-tuple, called unit
* There is no one-tuple (can you work out why?)

©2020 Andrew Gill, 2/29,1200x704

The type is written (type, type, ..., type), mirroring
the tuple value.

GHCi> let xs
GHCi> let xs
GHCi> let xs
GHCi>

() S)
(1,"Hello") :: (Integer,String)
(1,2, 3) :: (Integer,Float,Double)

Tuples can also be nested, with themselves or lists (or any type).

GHCi> :t ('c', ("Hello", ()))

('c', ("Hello", ())) :: (Char, ([Char], ()))

GHCi> :t [('c',"Hello"), ('d',"World")]
[('c',"Hello"), ('d', "World")] :: [(Char, [Char])]
GHCi> :t (['c'], [True,False])

(['c'], [True,False]) :: ([Char], [Bool])

KU

©2020 Andrew Gill, 10729, 1200704

les to functions

You've seen tuples before, in C/Java/ C++.

GHCi> let add3 (a,b,c) = a + b + c
GHCi> add3 (1,2, 3)
6

What is the type of add 3!

Prelude> :t add3
add3 :: Num a => (a, a, a) -> a

©2020 Andrew Gill, 1 1729, 1200704

Returning functions from tuc

Tuples are a way of grouping together arguments.
* You can pass multiple arguments to a function in C (Java, C++, etc).
* Why can you not return multiple results in C?

You can return multiple results in Haskell.

GHCi> let near x = (x - 1, x + 1)
GHCi1i> near 42
(41,43)

Haskell functions can take anything as arguments (including structures),

and return anything as results (also including structures)

©2020 Andrew Gill, 12/29, 1200704

Tuples functions

??2? :: (a,b) -> a
??2? :: (a,b) -> Db

What do these do?

fst :: (a,b) -> a
fst (a,b) = a

snd :: (a,b) -> Db
snd (a,b) =D

* Type level - there is an idea called “Theorems for free” - the theorem of
fst comes from its type

* Value level - this way of taking tuples to bits is called pattern matching

KU

22020 Andrew Gill, 13/29, 1200704

Common usage for tuples

* (Double,Double) isa2-D coordinate, vector, etc.
* (Double,Double,Double) isa 3-D coordinate.
For example, a translation can be written

scaleBy2 :: (Double,Double) => (Double,Double)
scaleBy2 (a,b) = (a*2,b*2)

Further, a circular region can be defined using

circle :: (Double,Double) =-> Bool
circle (x,y) = x"2 + y"2 <=1

We will see a Domain Specific Language that builds on this idea later.

KU

©2020 Andrew Gill, 14/2%, 1200704

Remember lists, and list operations? First, look at the types

length a] =-> Int

(++) [T] e S
null ‘a] => Bool

head al] =-> a

= NebAR Bt ey

tail :: [a] =-> [a]

(:) ta => [a] =-> [a]

1 Eni= b

-—- length of a list

= 0] © Y=Y 9 o 1 o N B B -
- 1s a list empty

— take the first element of

— take the rest of a list
- add a value to front of

What might a function of this typedo? ? :: [[a]] -> [a]

Eemic =l oSl s e]

—-— flatten a list

What might this function of thistypedo? ? : : [(a,b)] -> ([a], [b])

unzip :: [(a,b)] => ([al, [b])
into a pair of lists

-—- split a list of pairs

©2020 Andrew Gill, 15/29, 1200704

y . \V

Base types

Int, Integer, Float, Double, Bool, Char

Structu ral types
21, O (evepoce)y (ooeyocayene), oo

What about functlons?

. Functlons are values,intheway 4or [1,2,3] are values
* As values, they have a type that describes th em
* Functions, like structural types, can be nested

KU

