EECS 776

Functional Programming and Domain Specific Languages

Professor Gill

The University of Kansas

Feb 52020

Recap: [ypes

Types are shorthand descriptions of things

42 :: Int
* Type-checking vs. type-inference!?
* Type-checking is checking if the types are self-consistent
* Type-inference is checking without being told what the types are
* Haskell supports both. In practice:
* Most types are inferred by the compiler

 Types given by Haskell users (you!) are a mild form of documentation
* Question to ask: Does adding types add clarity?

©2020 Andrew Gill, 2/16,1745xB86

Primitives in Haskell

All primitive types start with an upper case letter
Int, Integer, Float, Double, Bool, Char
* Int - Signed value, the size of the machine int

* Integer - Arbitrary precision signed value
* Float - IEEE 32-bit floating point number
* Double - |[EEE 64-bit floating point number
* Bool - result of a comparison, True or False.
* Char - asingle character
There are ways of defining new types

©2020 Andrew Gill, 3/16,1 745xB86

Structure in Haskell

There are two built-in structures
* Lists - arbitrary length, every element has the same type

[1,2,3]:: [Int]
* Tuples - specific length, every element can have a different type

(1, 'c’',1.0):: (Int, Char, Float)

Both are used extensively in programs
(There are also ways of defining new structures)

©2020 Andrew Gill, 4/16,1 745xBB6

Lists are conceptually linked-lists. You can build them directly, or build a list out of a smaller list.

GHCi> let xs = [1,2,3]
GHCi> Xxs

[1,2,3]

GHCi> length xs

3

The type is written [type], and every element must be of that type.
What is the type of these bindings!?

GHCi> let xs
GHCi> let xs
GHCi> let xs
GHCi> let xs

1,2,3::Float]

1] :: [Int]
'1..100 :: Float]
]

©2020 Andrew Gill, 5/16,1 745xBB6

Lists (and most structures) can be nested

GHCi> let xs = [[1,2,3::Float]l, [5,6,7]]
GHCi> :t Xxs
[[Float]]

GHCi> let xs
GHCi> :t Xxs

[[[[Char]]]]

Lists can not mix types

[[ff'a’,'b', "'c"]]1]]

GHCi> let xs = [True, 'c']
<interactive>:15:16:
Couldn't match expected type "Bool' with actual type Char'
GHCi> let xs = [1,2,[3,4]]
<more bad things happening>

©2020 Andrew Gill, 6/16,1 745xBB6

There are many operations over list

length a] =-> Int — =
(++) al] =-> [a] -> [a] e
null PR e Yo ol | -
head al] =-> a ——
tail :: [a] =-> [a] ——
(:) ta => [a] =-> [a] — =
o o it = ottt o] @ Aot ——

length of a list

append two lists

o B Y O L) e L

take the first element of a list
take the rest of a list

add a value to front of list

get n-th element

Remember:

* —=>is used for function types (requiring arguments)
* lower-case names are polymorphic (can be anything)

* No structure is ever damaged by any function
* Instead, new structures are created

©2020 Andrew Gill, 7/16,1745xB86

Strings are Lists of Char

GHCi> let str = "Hello EECS 776"
GHCi> :t str

str :: [Char]

This means that strings can use the list operators

There is a short-cut name for strings, because they are so common

type String = [Char]

Stringand [Char] areinterchangeable.

GHCi1i> let str = "Hello EECS 776"
GHCi> :t str

str :: String

GHCi> :t str ++ []

str :: [Char]

String

©2020 Andrew Gill, 8/16,1745xB86

Tules

Tuples are a specific length, and every element can have a different type
* There are 2-tuples to (at least) | 5-tuples
* GHC supports up to 62
* If you are using more than (say) a 5-tuple, then you are using Haskell wrong
* They are intended, like in math, for small local groupings

GHCi> let xs = (1,"Hello", 'c'")
GHCi> :t xs

(Integer, [Char],Char)

GHCi> let xs = (1,"Hello")
GHCi> :t xs

(Integer, [Char])

GHCi>

* Thereis a zero-tuple, called unit
* There is no one-tuple (can you work out why?)

©2020 Andrew Gill, 2/16,1 745xB86

Tuples types

The type is written (type, type, ..., type), mirroring
the tuple value.

GHCi> let xs
GHCi> let xs
GHCi> let xs
GHCi>

() S)
(1,"Hello") :: (Integer,String)
(1,2, 3) :: (Integer,Float,Double)

Tuples can also be nested, with themselves or lists (or any type).

GHCi> :t ('c', ("Hello", ()))

('c', ("Hello", ())) :: (Char, ([Char], ()))

GHCi> :t [('c',"Hello"), ('d',"World")]
[('c',"Hello"), ('d', "World")] :: [(Char, [Char])]
GHCi> :t (['c'], [True,False])

(['c'], [True,False]) :: ([Char], [Bool])

©2020 Andrew Gill, 10/16,1745x886

les to functions

You've seen tuples before, in C/Java/ C++.

GHCi> let add3 (a,b,c) = a + b + c
GHCi> add3 (1,2, 3)
6

What is the type of add 3!

Prelude> :t add3
add3 :: Num a => (a, a, a) -> a

©2020 Andrew Gill, 1 1/16,1408x705

