EECS 776

Functional Programming and Domain Specific
Languages

Professor Gill

The University of Kansas

Feb 3792020

Types are the distinguishing feature of Haskell-like languages

* What are types!
42 :: Int

* What is type-checking and type-inference!
* Type-checking is checking if the types are self-consistent
* Type-inference is checking without being told what the types are
Most modern languages have some form of type-checking, some have
type-inference

KU

©2020 Andrew Gill, 2/32,1200x704

Robin Milner

Robin was an outstanding and well-rounded
computer scientist
* Machine-assisted proof construction
(LCF)
* Design of typed programming
languages (ML)
“Well-typed programs don't go

wrong.”
* Models of concurrent computation (CCS,
m-calculus)
He was awarded the Turing Award in 1991

©2020 Andrew Gill, 3/32,1200x704

ye systems in modern lan es

Java - static typing JavaScript - dynamic
public int example (int t in
X,double y) { yp g
String z = "Hello"; function example (x,y) {
. WEe v = AR E e
} .
}

Statically typed languages are dependable
but rigid Dynamically typed languages are flexible

but unreliable

KU

©2020 Andrew Gill, 4/32,1200x704

ve system in Haskell

In Haskell, you can give the types of the values ...

sphereArea :: Double => Double
sphereArea r = 4 * pi1i * r"2

... or let Haskell inferit...

sphereArea r = 4 * pi * r"2

The type says “take a Double, return a Double”
SorisaDouble,and 4 * pi *r"2isaDouble

Prelude> :1 Example.hs
*Main> sphereArea 5

314.1592653589793

©2020 Andrew Gill, 5/32,1200x704

e system in Haskell (GHCi

You can also give the type in GHCi ...

Prelude> let sphereArea Double => Double ; sphereArea r

=4 * pi1 * r"2

Prelude> :t areaOfSphere
areaOfSphere Double -> Double

...orlet GHCiinferit...
= 4 * pi1 * r"2

Prelude> let sphereArea r =

Prelude> :t
P

©2020 Andrew Gill, 6/32,1200x704

Type inference

Parametric polymorphism is a sweet spot on the typing landscape.
* Static typing,
* with Polymorphic values (give you dynamic-like typing when you
need it)

The type inference in Haskell is really powerful.
It is considered good form (and documentation) to write some
types, and let Haskell figure the rest out.

Haskell is not guessing the types, it is inferring them.

An inferred type is a high form of truth, and inference is a crowning
achievement of centuries of mathematics.

Caveat: In order to be work within this powerful system, many

primitives
in Haskell have non-obvious types. There is always a reasow

©2020 Andrew Gill, 7/32,1200x704

Everything has a type

Everything has a type, and GHCi can tell you, using : t.
Basic characters have type Char.

Prelude> 'c'

I'cl

Prelude> 'c' :: Char
I'cl

Prelude> :t 'c¢'

'¢' :: Char

Strings have type [Char], which means many chars. Strings are literally lists of characters.

Prelude> :t "Hello"
"Hello" :: [Char]

KU

©2020 Andrew Gill, 8/32,1200x704

Type of a Number

Prelude> 1 :: Int
1

This is a C-style 32 or 64 bit number. (The Haskell spec says at least 29 bits + sign bit.)

Prelude> 1.0 :: Double
1

Prelude> 1.0 :: Float
1

Double and Float are 64 bit and 32 bit floating point numbers.

Prelude> 1 :: Integer
1

Integer has an arbitrary precision.

KU

©2020 Andrew Gill, 2/32,1200x704

ye-inference of a Number

Prelude> :t 1
1 :: Num a => a

What can this mean? There is clearly more than meets the eye.
You can always use the : : notation to fixa nhumber as an Int, Float, etc.
Let us see some other examples, get back to basics, and come back to this.

©2020 Andrew Gill, 10/32, 1200704

ve-inference of a Function

Prelude> let f x = x

Prelude> :t £
P77

What can you know about x. Nothing at all?
Literally, the type of £ is Vt.t —=t. Haskell assumes the V in this example.

Prelude> :t £
f :: £t -> t

f takes anything, and returns (the same) anything.
Terminology: t is polymorphic, and £ is a polymorphic function.
In the type syntax, polymorphic arguments are lower case.

©2020 Andrew Gill, 1 1/32, 1200704

ve-inference of a Function (2

If we are more specific about arguments or results, the function will have a more specific
type to reflect this.

(x :: Int)

Prelude> let £ x
Prelude> :t £
f :: Int -> Int

Alternatively (Uses an extension ScopedTypeVariables ; originally not considered
good form):

Prelude> :set —-XScopedTypeVariables
Prelude> let f (x :: Int) = x
Prelude> :t £

f :: Int -> Int

Key observation: the original polymorphic function is the most general version of the
function.

©2020 Andrew Gill, 12/32, 1200704

ves of key arithmetic functions

Prelude> :t (+)
(+) :: Num a => a -> a -> a

This means

* (+) takes two a values,

* and returns an a value,

* and a is a Num-thing.

* “Num a =>"" means this is my constraint.

* “a -=>" means this is what | pass as an argument.
Now, addition does add two numbers, to give a number.

©2020 Andrew Gill, 13/32, 1200704

yes of arithmetic

Prelude> :t (*)
77?77

Prelude> :t (*)
(*) :: Num a => a -> a -> a

Prelude> negate 4
-4

Prelude> :t negate
22727

Prelude> :t negate
negate :: Num a => a =-> a

©2020 Andrew Gill, 14/32, 1200704

yes of arithmetic

What does this mean?

Prelude> :t ()
(™) :: (Integral b, Num a) => a -> b -> a

* A number can be raised to an Integral power using *.

Prelude> 2 ~ 10
1024

Prelude> 2.2 © 10
2655.992279142402
Prelude> 25 ® 0.5

<lnteractive>:4:4:
No i1nstance for (Integral b0) arising from a use of

~ A0

<lnteractive>:4:6:
No instance for (Fractional b0) arising from the literal

Prelude>

"0.5"

©2020 Andrew Gill, 15/32, 1200704

NU

ye of a number revisited

Prelude> :t 1

1 :: Num a => a

Prelude> :t 1.0

1.0 :: Fractional a => a

This makes more sense now!
1 is a Num, any Num.

l.0isaFractional,any Fractional.

©2020 Andrew Gill, 16/32, 1200704

Kinds of Numbers

Prelude> let sphereArea r = 4 * pi * r"2
Prelude> :t sphereArea
sphereArea :: Floating a => a -> a

* Numis basic arithmetic (+), (*)
 Fractional is Num and (floating-point style) division.
* Floatingis Fractional and trig functions, pi, sqrt, log.

©2020 Andrew Gill, 1 7/32, 1200704

Types are shorthand descriptions of things

42 :: Int

* Type-checking vs. type-inference!?

* Type-checking is checking if the types are self-consistent

* Type-inference is checking without being told what the types are
* Haskell supports both. In practice:

* Most types are inferred by the compiler

 Types given by Haskell users (you!) are a mild form of documentation
* Question to ask: Does adding types add clarity?

KU

©2020 Andrew Gill, 18/32, 1200704

Primitives in Haskell

All primitive types start with an upper case letter
Int, Integer, Float, Double, Bool, Char
* Int - Signed value, the size of the machine int

* Integer - Arbitrary precision signed value
* Float - IEEE 32-bit floating point number
* Double - |[EEE 64-bit floating point number
* Bool - result of a comparison, True or False.
* Char - asingle character
There are ways of defining new types

©2020 Andrew Gill, 19/32, 1200704

Structure in Haskell

There are two built-in structures
* Lists - arbitrary length, every element has the same type

(1,2,3]:: [Int]

* Tuples - specific length, every element can have a different type
(1, '¢c',1.0):: (Int, Char,
Float)

Both are used extensively in programs
(There are also ways of defining new structures)

KU

©2020 Andrew Gill, 20/32, 1200704

Lists are conceptually linked-lists. You can build them directly, or build a list out of a smaller
list.

GHCi> let xs = [1,2,3]
GHCi> Xxs

[1,2,3]

GHCi> length xs

3

The type is written [type], and every element must be of that type.
What is the type of these bindings!?

GHCi> let xs
GHCi> let xs
GHCi> let xs
GHCi> let xs

1,2,3::Float]

1] :: [Int]
1..100 :: Float]
]

KU

©2020 Andrew Gill, 21/32, 1200704

