EECS 776

Functional Programming and Domain Specific
Languages

Professor Gill

The University of Kansas

Jan 3152020




Homework |

Due Monday 3"9 February

* Find a ghci interpreter
* Try out the following example
* Write a function to compute the surface area of a sphere
* Run the function on a small number of inputs
* Bring your interaction with ghci (what you typed,

what ghci said back)
e Remember to use the 776 coversheet

KU



Small Haskell Prog

—-— This 1s a small Haskell program
module Main where

import System.Environment

maln :: IO ()
main = do args <- getArgs
jeheabia el ol =T e

-— printArgs print to stdout the
sl ikl

-— one line at a time.

printArgs :: [String] =-> I0 ()
printArgs (arg:args) = do putStrLn
arg

printArgs args
printArgs [] = return ()

$ ghc —--make Main.hs

[1 of 1] Compiling Main
Main.hs, Main.o )
Linking Main ...

$ ./Main Hello World
Hello

World

(

©2020 Andrew Gill, 3/1 2, 1200x704




Types are the distinguishing feature of Haskell-like languages

* What are types!
42 :: Int

* What is type-checking and type-inference!
* Type-checking is checking if the types are self-consistent
* Type-inference is checking without being told what the types are
Most modern languages have some form of type-checking, some have
type-inference

KU

©2020 Andrew Gill, 4/1 2, 1200x704



Robin Milner

Robin was an outstanding and well-rounded
computer scientist
* Machine-assisted proof construction
(LCF)
* Design of typed programming
languages (ML)
“Well-typed programs don't go

wrong.”
* Models of concurrent computation (CCS,
m-calculus)
He was awarded the Turing Award in 1991

©2020 Andrew Gill, 5/ 12, 1200x704



ye systems in modern lan es

Java - static typing JavaScript - dynamic
public int example (int t in
X,double y) { yp g
String z = "Hello"; function example (x,y) {
. WEe v = AR E e
} .
}

Statically typed languages are dependable
but rigid Dynamically typed languages are flexible

but unreliable

KU

©2020 Andrew Gill, 6/1 2, 1200x704



ve system in Haskell

In Haskell, you can give the types of the values ...

sphereArea :: Double => Double
sphereArea r = 4 * pi1i * r"2

... or let Haskell inferit...

sphereArea r = 4 * pi * r"2

The type says “take a Double, return a Double”
SorisaDouble,and 4 * pi *r"2isaDouble

Prelude> :1 Example.hs
*Main> sphereArea 5

314.1592653589793

©2020 Andrew Gill, 7712, 1200x704



e system in Haskell (GHCi

You can also give the type in GHCi ...

Prelude> let sphereArea Double => Double ; sphereArea r

=4 * pi1 * r"2

Prelude> :t areaOfSphere
areaOfSphere Double -> Double

...orlet GHCiinferit...
= 4 * pi1 * r"2

Prelude> let sphereArea r =

Prelude> :t
P

©2020 Andrew Gill, 8/1 2, 1200x704




Type inference

Parametric polymorphism is a sweet spot on the typing landscape.
* Static typing,
* with Polymorphic values (give you dynamic-like typing when you
need it)

The type inference in Haskell is really powerful.
It is considered good form (and documentation) to write some
types, and let Haskell figure the rest out.

Haskell is not guessing the types, it is inferring them.

An inferred type is a high form of truth, and inference is a crowning
achievement of centuries of mathematics.

Caveat: In order to be work within this powerful system, many

primitives
in Haskell have non-obvious types. There is always a reasow

©2020 Andrew Gill, /12, 1200x704



