Requirements Modeling:
Behavior-Based

Prof. Alex Bardas

Behavioral Modeling

* Models the dynamics of the system

* Represents the behavior of the system as a function of events
and time

* Indicates how software will respond to events

* Information being exchanged is not the essential part of the
behavioral model but the fact that information has been exchanged

|dentify Events

* Recap: use case
* A sequence of interaction involving actors and the system
* An event occurs when an actor and the system interact
e Use case diagrams, activity diagrams, swimlane diagrams

e.g., UC-1 of the secure home access case study

Use Case 1: Unlock

Use Case UC-1: Unlock

Related

Requirements: REQ1, REQ2, REQ3 and REQ4

Primary Actor: Any of: Tenant, Landlord

Actor’s Goal: To disarm the lock and get space lighted up automatically

Secondary Actors: LockDevice, LightSwitch, Timer

* The set of valid keys stored in the system database is non-empty

Preconditions: * The system displays the menu of available functions
* At the door keypad the menu choices are “Lock” and “Unlock”
Post conditions: The auto-lock timer has started count down from autolLockinterval

Flow of Events for Main Success Scenario:

— 1. Tenant/Landlord arrives at the door and selects the menu item “Unlock”
2. include::AuthenticateUser (UC-7)
< 3 System (a) signals to the Tenant/Landlord the lock status, e.g., “disarmed,” (b) signals
to LockDevice to disarm the lock, and (c) signals to LightSwitch to turn the light on
<« 4., System signals to the Timer to start the auto-lock timer countdown
— 5. Tenant/Landlord opens the door, enters the home [and shuts the door and locks]

Flow of Events

e UC-1
e Tenant arrives at the door and selects the menu item “Unlock”

* Include::AuthenticateUser (UC-7)

» System prompts the actor for identification
* Tenant supplies a valid key
» System (a) verifies the key is valid; and (b) signals to actor the validity of key

Flow of Events

e UC-1
e Tenant arrives at the door and selects the menu item “Unlock”

* Include::AuthenticateUser (UC-7)

» System prompts the actor for identification
* Tenant supplies a valid key
» System (a) verifies the key is valid; and (b) signals to actor the validity of key

* Some events have direct impact on the flow of control
* Key checked

Sequence of Events

* Allocating events to objects
* Tenant object is with key entered event
* Objects may generate events

* Or, objects may recognize events: key checked

System Sequence of Events

System sequence of events of UC-1 Depicts actor interactions instead of object interactions

X oon XX Xx

"""" . : System : , . .
User | Y LockDevice LightSwitch Timer
QRtiating {acttfr» -~ «supporting actor» «supporting actor» «offstage actor»

Select function(“unloc" '/’ _________ N
—%A_ — 1
1 1
< prompt for the key : i
__________________ |
time is measixed H i
i enter key [I
vertically > | Iverify key :
.u : :
1 1
. . «— I
signal: valid key, lock open| | 1
""""""""" 1 1
| open the lock |
i open e lock {
I .
I E_ _lum on the _"9h_t>
I
. I, start ("duration"),
\ H
N e ——— - H
objects need to be called

EECS 448 Software Engineering 8

Sequence Diagram

* Captures how events cause the flow from one object to another object as a
function of time

Design

object Sequence Diagram

System Sequence Diagram interactions

state

ontroller : Checker : KeyStorage

checkKey() |
| .
User P sk := getNext() |
«initiating actor» >
select function(“unlock") § u
|
¢ promptforthe key _ |
enter key) . o
> verify key
signal: valid key, lock open val == null : setLit(true
B open the lock, . . [else] ()
turn on the light time Spen‘l' n S
| an activity
start ("duration*) I
.................. > RO 0700408 %0 4870, 6% 00 48" v, QO A AR AR W S MRS IR RS . AN

interaction
frame

EECS 448 Software Engineering

Sequence Diagram

Objects: columns

Messages: arrows

Activations: narrow rectangles
Lifelines: dashed lines

X

Passenger

TicketMachine

selectZone() ‘[:|

insertCoins()

pickUpTicket()

pickupChange() D

Sequence Diagram

* Synchronous message

* The routine that handles the message is completed before the caller
resumes execution

>

:B

doYouUnderstand()
—

Caller
Blocked
e yes

return
(optional)

Sequence Diagram

* Asynchronous message
* Sender does not wait for the receiver to finish processing the message
* Continues immediately

A

| e

alert()

Sequence Diagram

* Message creation
* Denoted by a message arrow pointing to the object

* Message destruction
* Denoted by an X mark at the end of the destruction activation

old:A old:A new:B

destroy()

rov

create()

Sequence Diagram

* |teration

* Denoted by a * preceding the message name

e Condition

* Denoted by Boolean expression in [| before the message name

Sequence Diagram

Passenger ChangeProcessor Coinldentifier Dlspllay CoinDrop

—1* insertChange(coin)

— lookupCoin(coin) !

v

A

lteration displayPrice (billed Amount)

L

| [billed Amount<0] return¢hange(-billedAmount)

e >

rCondition

Exampl

Client

€5

print(doc,client)

‘ :PrintServer

enqueue(job)

Repeated forever
with 1 min
interludes

[job] done(status)

:Queue

:Printer

|

job=dequeue()

A 4

[job]print(job.doc)

A 4

Proxy

Exampl

Client

€5

print(doc,client)

‘ :PrintServer

enqueue(job)

Repeated forever
with 1 min
interludes

[job] done(status)

:Queue

:Printer

|

job=dequeue()

A 4

[job]print(job.doc)

A 4

Proxy

Exampl

Client

€5

print(doc,client)

‘ :PrintServer

enqueue(job)

Repeated forever
with 1 min
interludes

[job] done(status)

:Queue

:Printer

|

job=dequeue()

A 4

[job]print(job.doc)

A 4

Proxy

Exampl

Client

€5

print(doc,client)

‘ :PrintServer

enqueue(job)

Repeated forever
with 1 min
interludes

[job] done(status)

:Queue

:Printer

Proxy

|

job=dequeueg()

A 4

[job]print(job.doc)

A 4

EECS 448 Software Engineering

19

Exampl

Client

€5

print(doc,client)

‘ :PrintServer

enqueue(job)

Repeated forever
with 1 min
interludes

[job] done(status)

:Queue

:Printer

Proxy

|

job=dequeue()

A 4

[job]print(job.doc)

A 4

EECS 448 Software Engineering

20

Exampl

Client

€5

print(doc,client)

‘ :PrintServer

enqueue(job)

Repeated forever
with 1 min
interludes

[job] done(status)

:Queue

:Printer

Proxy

|

job=dequeue()

A 4

[job]print(job.doc)

A 4

EECS 448 Software Engineering

21

Exampl

Client

€5

print(doc,client)

‘ :PrintServer

enqueue(job)

Repeated forever
with 1 min
interludes

[job] done(status)

:Queue

:Printer

|

job=dequeue()

A 4

[job]print(job.doc)

A 4

Proxy

State Representations

* Represent the state of a class as the system performs its function

* A passive state: the current status of all attributes of an object 3
£—

EEEED

* “timestamp” of “Key” is updated by the “key entered” event

* An active state: the current status of the object as it undergoes an ongoing
transformation or processing

* “devStatus” of “LightDevice” is “on” or “off”

e States of “Player” is “moving”, “at rest”, “injured”, etc.

EECS 448 Software Engineering 23

State Diagrams

 State Diagram indicates how an individual class changes state based
on external events.

* It models an object’s states, actions performed on the states, and
transitions between the states.

 State transition denoted by arrow, labeled by the event;

* A “guard” is specified as a Boolean condition that should be satisfied to cause a transition;
* An “action” occurs concurrently with state transition (consequence)
* A special “do activity” state (denoted as “do/<activity>")

(Comparing]
L do/validateKey J

EECS 448 Software Engineering

24

A State Diagram Example

State diagram for the

. uard condition
Controller class in UC-1 guare ¢

o
0
5
0
5
K

event invalid-key/; [numOfAttemps < maxNumOfAttgmpﬁtﬁs], 2

“signal-failure

_invalid-key / invalid-key

] signal-failure (_ [NnumOfAttemps > maxNumOfAttempts] /
Locked J L Accepting sound-alarm
."“
R Four states
state valid-key / Two events
" | 'signal-success .
T action Five valid transitions
transition valid-key / Blocked
signal-success

v
®

EECS 448 Software Engineering 25

Unlocked

Wrap-Up

* How does the system behave?
* Make a list of the different states of a system

* How does the system change state?

* Indicate how the system makes a transition from one state to another
* Indicate event
* Indicate action

* Draw a state diagram or a sequence diagram.

Wrap-Up

e To create the model

* Evaluate all use-cases to fully understand the sequence of
interaction within the system

* [dentify events that drive the interaction sequence and understand
how these events relate to specific objects

* Create a sequence for each use-case
* Build a state diagram for the system

* Review the behavioral model to verify accuracy and consistency

EECS 448 Software Engineering 27

Keep in Mind! In Software Specification ...

Everyone knew
exactly what had to be

done until someone
wrote it down!

EECS 448 Software Engineering

28

References

* Prof. Fengjun Li’s EECS 448 Fall 2015 slides

* This slide set has been extracted and updated from the slides
designed to accompany Software Engineering: A Practitioner’s
Approach, 8/e (McGraw-Hill 2014) by Roger Pressman

