
Requirements Modeling:
Behavior-Based

Prof. Alex Bardas

Behavioral Modeling

•Models the dynamics of the system
• Represents the behavior of the system as a function of events

and time
• Indicates how software will respond to events
• Information being exchanged is not the essential part of the

behavioral model but the fact that information has been exchanged

EECS 448 Software Engineering 2

Identify Events

• Recap: use case

• A sequence of interaction involving actors and the system

• An event occurs when an actor and the system interact

• Use case diagrams, activity diagrams, swimlane diagrams

e.g., UC-1 of the secure home access case study

EECS 448 Software Engineering 3

Use Case 1: Unlock
Use Case UC-1: Unlock

Related
Requirements: REQ1, REQ2, REQ3 and REQ4

Primary Actor: Any of: Tenant, Landlord
Actor’s Goal: To disarm the lock and get space lighted up automatically

Secondary Actors: LockDevice, LightSwitch, Timer

Preconditions:
• The set of valid keys stored in the system database is non-empty
• The system displays the menu of available functions
• At the door keypad the menu choices are “Lock” and “Unlock”

Post conditions: The auto-lock timer has started count down from autoLockInterval
Flow of Events for Main Success Scenario:
® 1. Tenant/Landlord arrives at the door and selects the menu item “Unlock”

2. include::AuthenticateUser (UC-7)
¬ 3. System (a) signals to the Tenant/Landlord the lock status, e.g., “disarmed,” (b) signals

to LockDevice to disarm the lock, and (c) signals to LightSwitch to turn the light on
¬ 4. System signals to the Timer to start the auto-lock timer countdown
® 5. Tenant/Landlord opens the door, enters the home [and shuts the door and locks]

EECS 448 Software Engineering 4

Flow of Events

• UC-1
• Tenant arrives at the door and selects the menu item “Unlock”
• Include::AuthenticateUser (UC-7)

• System prompts the actor for identification
• Tenant supplies a valid key
• System (a) verifies the key is valid; and (b) signals to actor the validity of key

• …

EECS 448 Software Engineering 5

Flow of Events

• UC-1
• Tenant arrives at the door and selects the menu item “Unlock”
• Include::AuthenticateUser (UC-7)

• System prompts the actor for identification
• Tenant supplies a valid key
• System (a) verifies the key is valid; and (b) signals to actor the validity of key

• …
• Some events have direct impact on the flow of control

• Key checked

EECS 448 Software Engineering 6

Sequence of Events

• Allocating events to objects

• Tenant object is with key entered event

• Objects may generate events

• Or, objects may recognize events: key checked

EECS 448 Software Engineering 7

System Sequence of Events

select function(“unlock")

: SystemUser
«initiating actor»

prompt for the key

enter key
verify key

signal: valid key, lock open

open the lock

LightSwitch
«supporting actor»

turn on the light

LockDevice
«supporting actor»

Timer
«offstage actor»

start ("duration“)

select function(“unlock")

: SystemUser
«initiating actor»

prompt for the key

enter key
verify key

signal: valid key, lock open

open the lock

LightSwitch
«supporting actor»

turn on the light

LockDevice
«supporting actor»

Timer
«offstage actor»

start ("duration“)

System sequence of events of UC-1 Depicts actor interactions instead of object interactions

event

time is measured
vertically

objects need to be called

EECS 448 Software Engineering 8

Sequence Diagram

select function(“unlock")

: SystemUser
«initiating actor»

prompt for the key

enter key
verify key

signal: valid key, lock open
open the lock,
turn on the light

Timer
«offstage actor»

start ("duration“)

checkKey()
sk := getNext()

setOpen(true)

: Checker : KeyStorage

val == null : setLit(true)

alt val != null

[else]

ystemystem

Controller : LockCtrl

System Sequence Diagram

Design
Sequence Diagram

time spent in
an activity

object
interactions

state

interaction
frame

• Captures how events cause the flow from one object to another object as a
function of time

EECS 448 Software Engineering 9

Sequence Diagram

• Objects: columns
• Messages: arrows
• Activations: narrow rectangles
• Lifelines: dashed lines

selectZone()

pickupChange()

pickUpTicket()

insertCoins()

Passenger TicketMachine

EECS 448 Software Engineering 10

Sequence Diagram

• Synchronous message
• The routine that handles the message is completed before the caller

resumes execution

:A :B

doYouUnderstand()

Caller
Blocked

return
(optional)

yes

EECS 448 Software Engineering 11

Sequence Diagram

• Asynchronous message
• Sender does not wait for the receiver to finish processing the message
• Continues immediately

:A :B

alert()

EECS 448 Software Engineering 12

Sequence Diagram

• Message creation
• Denoted by a message arrow pointing to the object

• Message destruction
• Denoted by an X mark at the end of the destruction activation

13EECS 448 Software Engineering

old:A

create()
:B

old:A new:B

destroy()

Sequence Diagram

• Iteration

• Denoted by a * preceding the message name

• Condition

• Denoted by Boolean expression in [] before the message name

EECS 448 Software Engineering 14

Sequence Diagram

Passenger ChangeProcessor

insertChange(coin)

CoinIdentifier Display CoinDrop

displayPrice (billed Amount)

lookupCoin(coin)

price

[billed Amount<0] returnChange(-billedAmount)

Iteration

Condition

*

EECS 448 Software Engineering 15

Examples

print(doc,client)
Client

:PrintServer :Queue :Printer
Proxy

enqueue(job)

status

job=dequeue()

[job]print(job.doc)

[job] done(status)

Repeated forever
with 1 min
interludes

EECS 448 Software Engineering 16

Examples

print(doc,client)
Client

:PrintServer :Queue :Printer
Proxy

enqueue(job)

status

job=dequeue()

[job]print(job.doc)

[job] done(status)

Repeated forever
with 1 min
interludes

EECS 448 Software Engineering 17

Examples

print(doc,client)
Client

:PrintServer :Queue :Printer
Proxy

enqueue(job)

status

job=dequeue()

[job]print(job.doc)

[job] done(status)

Repeated forever
with 1 min
interludes

EECS 448 Software Engineering 18

Examples

print(doc,client)
Client

:PrintServer :Queue :Printer
Proxy

enqueue(job)

status

job=dequeue()

[job]print(job.doc)

[job] done(status)

Repeated forever
with 1 min
interludes

EECS 448 Software Engineering 19

Examples

print(doc,client)
Client

:PrintServer :Queue :Printer
Proxy

enqueue(job)

status

job=dequeue()

[job]print(job.doc)

[job] done(status)

Repeated forever
with 1 min
interludes

EECS 448 Software Engineering 20

Examples

print(doc,client)
Client

:PrintServer :Queue :Printer
Proxy

enqueue(job)

status

job=dequeue()

[job]print(job.doc)

[job] done(status)

Repeated forever
with 1 min
interludes

EECS 448 Software Engineering 21

Examples

print(doc,client)
Client

:PrintServer :Queue :Printer
Proxy

enqueue(job)

status

job=dequeue()

[job]print(job.doc)

[job] done(status)

Repeated forever
with 1 min
interludes

EECS 448 Software Engineering 22

State Representations

• Represent the state of a class as the system performs its function

• A passive state: the current status of all attributes of an object

• “timestamp” of “Key” is updated by the “key entered” event

• An active state: the current status of the object as it undergoes an ongoing
transformation or processing

• “devStatus” of “LightDevice” is “on” or “off”

• States of “Player” is “moving”, “at rest”, “injured”, etc.

1
2
3
4
5
X
Y

1
2
3
4
5
X
Y

EECS 448 Software Engineering 23

State Diagrams

• State Diagram indicates how an individual class changes state based
on external events.
• It models an object’s states, actions performed on the states, and

transitions between the states.
• State transition denoted by arrow, labeled by the event;

• A “guard” is specified as a Boolean condition that should be satisfied to cause a transition;
• An “action” occurs concurrently with state transition (consequence)
• A special “do activity” state (denoted as “do/<activity>”)

Comparing
do/validateKey

EECS 448 Software Engineering 24

invalid-key [numOfAttemps £ maxNumOfAttempts] /
signal-failure

invalid-key /
signal-failure

invalid-key
[numOfAttemps > maxNumOfAttempts] /

sound-alarm

Blocked

Locked

valid-key /
signal-success

valid-key /
signal-success

Unlocked

Accepting

invalid-key [numOfAttemps £ maxNumOfAttempts] /
signal-failure

invalid-key /
signal-failure

invalid-key
[numOfAttemps > maxNumOfAttempts] /

sound-alarm

Blocked

Locked

valid-key /
signal-success

valid-key /
signal-success

Unlocked

Accepting

A State Diagram Example

State diagram for the
Controller class in UC-1

state

event

guard condition

actiontransition

Four states

Two events

Five valid transitions

EECS 448 Software Engineering 25

Wrap-Up

• How does the system behave?
• Make a list of the different states of a system

• How does the system change state?
• Indicate how the system makes a transition from one state to another

• Indicate event
• Indicate action

• Draw a state diagram or a sequence diagram.

EECS 448 Software Engineering 26

Wrap-Up

• To create the model
• Evaluate all use-cases to fully understand the sequence of

interaction within the system
• Identify events that drive the interaction sequence and understand

how these events relate to specific objects
• Create a sequence for each use-case
• Build a state diagram for the system
• Review the behavioral model to verify accuracy and consistency

EECS 448 Software Engineering 27

Keep in Mind! In Software Specification …

Everyone knew
exactly what had to be

done until someone
wrote it down!

EECS 448 Software Engineering 28

References

• Prof. Fengjun Li’s EECS 448 Fall 2015 slides

• This slide set has been extracted and updated from the slides
designed to accompany Software Engineering: A Practitioner’s
Approach, 8/e (McGraw-Hill 2014) by Roger Pressman

29

