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Behavioral Modeling

* Models the dynamics of the system

* Represents the behavior of the system as a function of events
and time

* Indicates how software will respond to events

* Information being exchanged is not the essential part of the
behavioral model but the fact that information has been exchanged



|dentify Events

* Recap: use case
* A sequence of interaction involving actors and the system
* An event occurs when an actor and the system interact
e Use case diagrams, activity diagrams, swimlane diagrams

e.g., UC-1 of the secure home access case study



Use Case 1: Unlock

Use Case UC-1: Unlock

Related

Requirements: REQ1, REQ2, REQ3 and REQ4

Primary Actor: Any of: Tenant, Landlord

Actor’s Goal: To disarm the lock and get space lighted up automatically

Secondary Actors: LockDevice, LightSwitch, Timer

* The set of valid keys stored in the system database is non-empty

Preconditions: * The system displays the menu of available functions
* At the door keypad the menu choices are “Lock” and “Unlock”
Post conditions: The auto-lock timer has started count down from autolLockinterval

Flow of Events for Main Success Scenario:

— 1. Tenant/Landlord arrives at the door and selects the menu item “Unlock”
2. include::AuthenticateUser (UC-7)
< 3 System (a) signals to the Tenant/Landlord the lock status, e.g., “disarmed,” (b) signals
to LockDevice to disarm the lock, and (c) signals to LightSwitch to turn the light on
<« 4., System signals to the Timer to start the auto-lock timer countdown
— 5. Tenant/Landlord opens the door, enters the home [and shuts the door and locks]




Flow of Events

e UC-1
e Tenant arrives at the door and selects the menu item “Unlock”

* Include::AuthenticateUser (UC-7)

» System prompts the actor for identification
* Tenant supplies a valid key
» System (a) verifies the key is valid; and (b) signals to actor the validity of key



Flow of Events

e UC-1
e Tenant arrives at the door and selects the menu item “Unlock”

* Include::AuthenticateUser (UC-7)

» System prompts the actor for identification
* Tenant supplies a valid key
» System (a) verifies the key is valid; and (b) signals to actor the validity of key

* Some events have direct impact on the flow of control
* Key checked



Sequence of Events

* Allocating events to objects
* Tenant object is with key entered event
* Objects may generate events

* Or, objects may recognize events: key checked



System Sequence of Events

System sequence of events of UC-1  Depicts actor interactions instead of object interactions
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Sequence Diagram

* Captures how events cause the flow from one object to another object as a
function of time

Design

object Sequence Diagram

System Sequence Diagram interactions
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Sequence Diagram

Objects: columns

Messages: arrows

Activations: narrow rectangles
Lifelines: dashed lines

X

Passenger

TicketMachine

selectZone() ‘[:|

insertCoins()

pickUpTicket()

pickupChange() D



Sequence Diagram

* Synchronous message

* The routine that handles the message is completed before the caller
resumes execution

>

:B

doYouUnderstand()
—

Caller
Blocked
e yes

return
(optional)




Sequence Diagram

* Asynchronous message
* Sender does not wait for the receiver to finish processing the message
* Continues immediately

A

| e

alert()




Sequence Diagram

* Message creation
* Denoted by a message arrow pointing to the object

* Message destruction
* Denoted by an X mark at the end of the destruction activation

old:A old:A new:B

destroy()

rov

create()




Sequence Diagram

* |teration

* Denoted by a * preceding the message name

e Condition

* Denoted by Boolean expression in [ | before the message name



Sequence Diagram
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State Representations

* Represent the state of a class as the system performs its function

* A passive state: the current status of all attributes of an object 3
£—

EEEED

* “timestamp” of “Key” is updated by the “key entered” event

* An active state: the current status of the object as it undergoes an ongoing
transformation or processing

* “devStatus” of “LightDevice” is “on” or “off”

e States of “Player” is “moving”, “at rest”, “injured”, etc.
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State Diagrams

 State Diagram indicates how an individual class changes state based
on external events.

* It models an object’s states, actions performed on the states, and
transitions between the states.

 State transition denoted by arrow, labeled by the event;

* A “guard” is specified as a Boolean condition that should be satisfied to cause a transition;
* An “action” occurs concurrently with state transition (consequence)
* A special “do activity” state (denoted as “do/<activity>")

( Comparing ]
L do/validateKey J
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A State Diagram Example

State diagram for the

. uard condition
Controller class in UC-1 guare ¢

o
0
5
0
5
K

event invalid-key/; [numOfAttemps < maxNumOfAttgmpﬁtﬁs], 2

“signal-failure

\_invalid-key / invalid-key

] signal-failure ( _ [NnumOfAttemps > maxNumOfAttempts] /
Locked J L Accepting sound-alarm
."“
R Four states
state valid-key / Two events
" | 'signal-success .
T action Five valid transitions
transition valid-key / Blocked
signal-success

v
®
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Wrap-Up

* How does the system behave?
* Make a list of the different states of a system

* How does the system change state?

* Indicate how the system makes a transition from one state to another
* Indicate event
* Indicate action

* Draw a state diagram or a sequence diagram.



Wrap-Up

e To create the model

* Evaluate all use-cases to fully understand the sequence of
interaction within the system

* [dentify events that drive the interaction sequence and understand
how these events relate to specific objects

* Create a sequence for each use-case
* Build a state diagram for the system

* Review the behavioral model to verify accuracy and consistency
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Keep in Mind! In Software Specification ...

Everyone knew
exactly what had to be

done until someone
wrote it down!

EECS 448 Software Engineering

28



References

* Prof. Fengjun Li’s EECS 448 Fall 2015 slides

* This slide set has been extracted and updated from the slides
designed to accompany Software Engineering: A Practitioner’s
Approach, 8/e (McGraw-Hill 2014) by Roger Pressman



