
Pattern-Based Design
Prof. Alex Bardas

Design Patterns

• What are developers doing with software?
• Develop
• Understand
• Maintain – fix bugs
• Update – add new features

• Important questions for a designer
• Has anyone developed a solution for this?
• Is there a standard way of describing a problem so I can look it up?
• Is there an organized method for representing the solution to the problem?

2EECS 448 Software Engineering

Design Patterns

• A design pattern is
• An abstraction that prescribes a design solution to a specific,

well-bounded design problem.
• A three-part rule which expresses a relation between a problem

and a solution in a certain context
• Why?

o Most problems have multiple solutions
o Context helps to define an environment
o How can the problem be interpreted within the environment?
o What solution is appropriate within the environment? An environment is influenced

by a “system of forces” (limitations and constraints)

3EECS 448 Software Engineering

Design Patterns

•Why use a design pattern?
• Allows the software engineering community to capture design

knowledge in a way that enables it to be reused

• Efficient: avoiding lengthy process of trials and errors
• Predictable: the solution is known to work for a given problem
• Readable: use pattern terminology

4EECS 448 Software Engineering

Design Patterns

• Popularity increased after the following book was published:

• Design Patterns: Elements of Reusable Object-Oriented Software
• Authors: E. Gamma; R. Helm, R. Johnson, and J. Vlissides (a.k.a the

Gang of Four)

• Catalogs 23 different patterns as solutions to different classes of

problems, in C++ & Smalltalk

• Provide solutions for common problems in micro-design

• Broadly applicable, used by many people over many years

5EECS 448 Software Engineering

Design Patterns Structure

• Name
• Important to know for easier communication between designers

• Problem
• Intent including description and context
• When to apply the pattern

• Solution
• Usually a class diagram segment
• Describe details of objects/classes/structure if needed
• UML, abstract code

• Consequences
• Results and tradeoffs

6EECS 448 Software Engineering

Design Patterns

•Creational Patterns
• Abstracting the object-instantiation process (e.g., Factory method)

• Structural Patterns
• How objects/classes can be combined (e.g., Proxy pattern)

•Behavioral Patterns
• Communication between objects (e.g., Command pattern)

7EECS 448 Software Engineering

Creational Patterns

• Focus on “creation, composition, and representation
of objects”
• Deal with the form of object creation: initializing and configuring

• Abstract factory: factory for building related objects
• Builder: factory for building complex objects incrementally
• Factory method: method in a derived class creates associates
• Prototype: factory for cloning new instances from a prototype
• Singleton: factory for a singular instance

8EECS 448 Software Engineering

Factory Method

•Problem: how to support look-and-feel settings?
• Assume user sets the appearance of scrollbars, menus,

windows, etc.
• Results in different look-and-feel standards

e.g., Two classes MotifScrollBar and WindowsScrollBar, both are
subclasses of ScrollBar

• How to create a new scrollbar?

9EECS 448 Software Engineering

Factory Method

• Problem: how to support look-and-feel settings?
• But we don’t know if it’s a Motif or Windows type

ScrollBar sc = new WindowsScrollBar();
• Not good!

if (style==Windows){
sc = new WindowsScrollBar();

} else{
sc = new MotifScrollBar();

}
• Still not good!
• How to add new styles?

10EECS 448 Software Engineering

Factory Method

• Used when a method returns one of several possible classes
that share a common super class
• The class is chosen at run time – don’t know ahead of time what

class object to instantiate
• Create a factory class
• A superclass specifies all standard and generic behavior
• Using virtual “placeholders” for creation steps
• Delegate the creation details to subclasses that are supplied by the client

11EECS 448 Software Engineering

abstract class GUIFactory{
abstract ScrollBar CreateScrollBar();
abstract Menu CreateMenu();
...

}

Factory Method

• Problem: how to support look-and-feel settings?
• Solution: define a GUIFactory class
• Create objects without specifying the exact class of the object

12EECS 448 Software Engineering

Factory Method

• Problem: how to support look-and-feel settings?
• Solution: define a GUIFactory class
• WindowsFactory implements the abstract GUIFactory class
• Create a factory object with conditions set by the user

13EECS 448 Software Engineering

class WindowsFactory extends GUIFactory{
ScrollBar createScrollBar(){

return new WindowsScrollBar()
}
Menu createMenu(){

return new WindowsMenu();
}
...

}

GUIFactory factory;
if(style== WINDOW){

factory = new WindowsFactory();
} else

if(style== MOTIF){
factory = new MotifFactory();

} else return null;
}

Factory Method

• Applies to the object creation of a family of classes
• All potential classes are in the same subclass hierarchy
• Can centralize class section code
• Lift the conditional creation of objects to the creation of factories
• The factory can be changed at runtime

• Pros and cons
• Flexible for adding new types of objects
• Hide subclasses from user

• Not necessary if an instantiation of a class never changes
• Sometimes it makes the code more difficult to understand

14EECS 448 Software Engineering

Structural Patterns

• Focus on “how classes and objects are organized and
integrated to build a larger structure”
• Deal with composition of classes and objects
• Use inheritance to compose interfaces
• Add flexibility inherent in object composition due to the ability to

change composition at run-time

15EECS 448 Software Engineering

Proxy Pattern

• Proxy pattern acts as an interface to something else
• Used to control access to an object
• Functions as a placeholder for the server object – offers the same

interface
• Allows client objects to cross a “barrier” to the server object with

limited access

16EECS 448 Software Engineering

Proxy Pattern

• Proxy pattern acts as an interface to something else
• Proxy implements the same interface as the server object
• Do not instantiate server objects unless and until it is actually

requested by the client

17EECS 448 Software Engineering

clientclient «interface»
Subject

+ request()

RealSubject

+ request()

RealSubject

+ request()

Proxy

+ request()

Proxy

+ request()

realSubject

Proxy Pattern
• Proxy pattern acts as an interface to something else
• Needed when the logistics of accessing the subject’s service is overly

complex – used as a helper object
• Protection Proxy
• Controls access to a sensitive master object
• If different policies constrain the access to the subject

• Virtual Proxy
• A placeholder for “expensive to create” objects
• If initiation of the subject is deferred to speed up the performance

• Remote Proxy
• If the subject is located in a remote address space
• Provides a local representative for the remote object

18EECS 448 Software Engineering

Protection Proxy
• Consider role-based access control

• Option 1: implement a “big/extensive” if-then-else statement at the client
• Not good! – leads to complex code that is difficult to extend

19EECS 448 Software Engineering

[user == sys-admin]

[user == landlord]

[else]

Grant full access
to metadata and data

Grant read/write access
to all data

Grant read-only access to
personal data and activity
data for own apartment

Deny all access

[else]

[user == tenant]

[else]

Obtain user role
and credentials

Protection Proxy

20EECS 448 Software Engineering

client : Controllerclient : Controller

dBase

«interface»
java.sql.Connection

+ createStatement(…) : Statement
+ getMetaData() : DatabaseMetaData
…

«interface»
java.sql.Connection

+ createStatement(…) : Statement
+ getMetaData() : DatabaseMetaData
…

request() methods

Subject

ConnectionImpl

…
+ createStatement(…) : Statement
+ getMetaData() : DatabaseMetaData
…

ConnectionImpl

…
+ createStatement(…) : Statement
+ getMetaData() : DatabaseMetaData
…

RealSubjectRealSubject

dBc dBc
DBConTenant

credentials_ : Object

+ createStatement(…) : Statement
+ getMetaData() : DatabaseMetaData
…
– checkRequestAuthorized()
– createStatmProxy(…) : Statement

DBConTenant

credentials_ : Object

+ createStatement(…) : Statement
+ getMetaData() : DatabaseMetaData
…
– checkRequestAuthorized()
– createStatmProxy(…) : Statement

tenant’s Proxy

DBConAdmin

credentials_ : Object

+ createStatement(…) : Statement
+ getMetaData() : DatabaseMetaData
…
– checkRequestAuthorized()
– createStatmProxy(…) : Statement

DBConAdmin

credentials_ : Object

+ createStatement(…) : Statement
+ getMetaData() : DatabaseMetaData
…
– checkRequestAuthorized()
– createStatmProxy(…) : Statement

admin’s Proxy

Factory

+ getDbaseConnection(credentials : Object) : java.sql.Connection

Factory

+ getDbaseConnection(credentials : Object) : java.sql.Connection

factory

Factory pattern
for creating Connection
and wrapping with Proxy

• Option 2: use a proxy for safe database access
• Each specifies a set of authorized messages from client to subject
• Unauthorized message will not pass through the proxy to the real subject

(ConnectionImpl)

Behavior Patterns

• Focus on “assignment of responsibility between objects and
the common communication patterns”

• Separate functionality from the object to which the
functionality applies

21EECS 448 Software Engineering

Command Pattern

• When objects invoke methods of other objects:
• If the invoking object wants to reverse the effort of a previous

invocation
• If we want to track the course of the operations

• A command pattern delegates the functionality from the
client to the Command object

• e.g., rolling back B’s state or logging operation history

22EECS 448 Software Engineering

Client
A

Receiver
B

doAction(params)

Client
A

execute()

Receiver
B

doAction(params)

Command

create(params)

unexecute()

Command Pattern

• Command pattern encapsulates all the information needed
to call a method into a “command” object
Structure:

23
EECS 448 Software Engineering

Receiver knows
how to perform
an operation

Command declares an
interface for executing

an operation

Invoker asks the
command to carry
out the request

Client creates a ConcreteCommand
object and sets its receiver

Example

• Switch controls Light on/off

24

public interface Command {
void execute();

}

Command interface
public class Light {

public Light() {
}
public void turnOn() {

System.out.println("The light is on");
}
public void turnOff() {

System.out.println("The light is off");
}

} Receiver

public class FlipUpCommand implements Command {
private Light theLight;
public FlipUpCommand(Light light) {

this.theLight = light;
}
public void execute(){

theLight.turnOn();
}

}
ConcreteCommand

EECS 448 Software Engineering

• Think about how to flip down (turn-off the lights)
• Need a separate ConcreteCommand invoked by the same invoker

25EECS 448 Software Engineering

public class PressSwitch {
public static void main(String[] args){

Light lamp = new Light();
Command switchUp = new FlipUpCommand(lamp);
Switch mySwitch = new Switch();

mySwitch.storeAndExecute(switchUp);
} Client

public class Switch {
private List<Command> history = new ArrayList<Command>();
public Switch() {
}
public void storeAndExecute(Command cmd) {

this.history.add(cmd);
cmd.execute();

}
} Invoker

Command Pattern

• Support undo (and redo)
• Let each Command store what it needs to restore state

• Store Commands in a stack or queue
• Add more operations

• isReversible(): allow the invoker to
know if the command can be undone
• unexecute(): undo the effect of a
previous execute() operation

• Command pattern
• Stores a set of commands in a class to use over and over
• Easy to add new commands
• Cons: create many small classes that store lists of commands

26EECS 448 Software Engineering

ActionType1Cmd

+ execute()
+ unexecute()
+ isReversible()

ActionType2Cmd

+ execute()
+ unexecute()
+ isReversible()

«interface»
Command

+ execute()
+ unexecute()
+ isReversible() : boolean

ActionType1Cmd

+ execute()
+ unexecute()
+ isReversible()

ActionType2Cmd

+ execute()
+ unexecute()
+ isReversible()

«interface»
Command

+ execute()
+ unexecute()
+ isReversible() : boolean

Other Useful Design Patterns

• Observer
• Façade
• A façade is an object that provides a simplified interface to a larger body of code,

such as a class library.

• Decorator
• Allows behavior to be added to an individual object, either statically or

dynamically, without affecting the behavior of other objects from the same class.

• Bridge
• Decouples an abstraction from its implementation so that the two can vary

independently
27EECS 448 Software Engineering

Example: Observer Pattern

• A.k.a. Publish-Subscribe pattern
• Defines one-to-many dependency between objects

• The subject (i.e., publisher) maintains a list of dependents, observers (i.e.,
subscriber) and notifies them automatically of any state changes,
generally by calling one of their methods

• Indirect communication

28EECS 448 Software Engineering

Client Server

Request: doSomething(info) Request: getInfo()

Info
Src Doerinfo

(1) Request: subscribe()

Info
Src Doer

(2) event(info)

Example: Observer Pattern

•Why use the Publish-Subscribe pattern?
• When the subject doesn’t know the identity of observers
• Or, when the subject doesn’t need/want to know the observers
• The subject updates its state changes to observers and calls methods of

the observers

• Disassociating unrelated responsibilities increases reusability

29EECS 448 Software Engineering

30EECS 448 Software Engineering

Event Detector

…

detectEvent()

…

Doer1.tellMeWhatToDo()
Doer2.tellMeWhatToDo()
…

DoerType1

…

tellMeWhatToDo()
…

…

DoerType2

…

tellMeWhatToDo()
…

…

…

Responsibilities of Event Detector:
Doing:

• Detect events
Calling:

• Tell Doer-1 what to do
• Tell Doer-2 what to do

Þ change the Event Detector

• When event detection needs to change
• When new doer types need to be told what to do

unrelated!

31EECS 448 Software Engineering

Publisher

…
detectEvent()

…

subscriber.receive(Event)
…

Subscriber

publisher.subscribe(this)

receiveEvent()
…

…

subscribers : List

…

Implement the Event Detector as Publisher
Dissociate unrelated responsibilities:
• When event detection needs to change ®

change Publisher
• When new doer types need to be added ®

add an new Subscriber type

Type1Subscriber

+ receive()

«interface»
Subscriber

+ receive()

«interface»
Publisher

+ subscribe()
+ unsubscribe()

Type1Publisher

+ subscribe()
+ unsubscribe()

Type2Publisher

+ subscribe()
+ unsubscribe()

subscribers

*

Other Categorization of Patterns

• Architectural patterns describe broad-based design problems that
are solved using a structural approach
• Data patterns describe recurring data-oriented problems and the

data modeling solutions
• Component patterns (a.k.a. design patterns) address problems

associated with the development of subsystems and components
• Interface design patterns describe common user interface problems

and their solution with a system of forces
• WebApp patterns address a problem set that is encountered when

building WebApps.

EECS 448 Software Engineering 32

Frameworks

• In some cases, patterns may not be enough
• A framework is an implementation-specific skeletal infrastructure
• A framework contains a collection of:
• Hooks: some functionality is optional, user may add it if needed
• Slots: some components (classes/methods) are intentionally incomplete,

but must be implemented by the developer

33EECS 448 Software Engineering

Design Patterns vs. Frameworks

• Design patterns are more abstract than frameworks

• Design patterns are smaller architectural elements than
frameworks

• Design patterns are less specialized than frameworks

EECS 448 Software Engineering 34

Pattern-Based Design
• Begins with a requirements model

(either explicit or implied)
• Presents an abstract representation of

the system
• Describes the problem set, establishes

the context, and identifies the system
of forces.

EECS 448 Software Engineering 35

Pattern-Based Design
• Begins with a requirements model

(either explicit or implied)
• Presents an abstract representation of

the system
• Describes the problem set, establishes

the context, and identifies the system
of forces.

• Use methods and modeling tools
only when you’re faced with a
problem, context, and system of
forces that have not been solved
before.

EECS 448 Software Engineering 36

Thinking in Patterns
• Shalloway and Trott* suggested to think in patterns:

1. Be sure you understand the big picture – the context in which the software to be
built resides.

2. Examining the big picture – extract the patterns that are present at that level of
abstraction.

3. Begin your design with “big picture” patterns that establish a context or skeleton for
further design work.

4. “Work inward from the context” – looking for patterns at lower levels of
abstraction that contribute to the design solution.

5. Repeat steps 1 to 4 until the complete design is fleshed out.
6. Refine the design by adapting each pattern to the specifics of the software you’re

trying to build.

EECS 448 Software Engineering
37

* Shalloway, A., and J. Trott, Design Patterns Explained , 2nd ed., Addison-Wesley, 2005.

When Thinking in Design Patterns …
Follow the design tasks for pattern-based design:
1. Examine the requirements model and develop a problem hierarchy.
2. Determine if a reliable pattern language has been developed for the

problem domain.
3. Beginning with a broad problem, determine whether one or more

architectural patterns are available for it.
4. Using the collaborations provided for the architectural pattern, examine

subsystem- or component-level problems and search for appropriate
patterns to address them.

5. Repeat steps 2 through 5 until all broad problems have been addressed.

EECS 448 Software Engineering 38

When Thinking in Design Patterns …

6. If user interface design problems have been isolated (this is almost
always the case), search the many user interface design pattern
repositories for appropriate patterns.

7. Regardless of its level of abstraction, if a pattern language and/or
patterns repository or individual pattern shows promise, compare
the problem to be solved against the existing pattern(s) presented.

8. Be certain to refine the design as it is derived from patterns using
design quality criteria as a guide.

EECS 448 Software Engineering 39

Pattern-Organizing Table

• Microsoft suggests using a
pattern-organizing table to
organize your evaluation of
candidate patterns:

EECS 448 Software Engineering 40

Common Design Mistakes

• Not enough time has been spent to understand the underlying
problem, its context and forces, and as a consequence
• Select a pattern that looks right, but is inappropriate for the solution required.

• A wrong pattern is selected
• Refuse to see error and force fit the pattern.
• Forces not considered by the chosen pattern result in a poor or erroneous fit.

• Sometimes a pattern is applied too literally and the required
adaptations for your problem space are not implemented

EECS 448 Software Engineering 41

Patterns Repositories

• There are many sources for design patterns available
• Some patterns can be obtained from individually published pattern
languages, while others are available as part of a patterns portal or
patterns repository.
• Pattern Index - http://c2.com/cgi/wiki?PatternIndex
• Portland Pattern Repository - http://c2.com/ppr/index.html

EECS 448 Software Engineering 42

http://c2.com/cgi/wiki?PatternIndex
http://c2.com/ppr/index.html

References

• Prof. Fengjun Li’s EECS 448 Fall 2015 slides

• This slide set has been extracted and updated from the slides
designed to accompany Software Engineering: A Practitioner’s
Approach, 8/e (McGraw-Hill 2014) by Roger Pressman

43

